
X3T11/96-

X3T11/Project 1213-D/REV 0.8

HIGH-PERFORMANCE PARALLEL INTERFACE -
6400 Mbit/s Physical Layer

(HIPPI-6400-PH)

November 15, 1996

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT: This standard specifies a physical-level, point-to-point, full-duplex, link interface for
reliable, flow-controlled, transmission of user data at 6400 Mbit/s, per direction, over parallel copper
cables across distances of 50 m, or over parallel fiber-optic cables across distances of 200 m. Small
fixed-size micropackets provide an efficient, low-latency, structure for small transfers, and a
component for large transfers.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards
Committee X3. As such, this is not a completed standard. The contents are actively being modified
by X3T11. This document is made available for review and comment only. For current information
on the status of this document contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Carl Zeitler (X3T11 Vice-Chairman)
Distributed Processing Technology IBM Corporation, MS 9440
140 Candace Drive 11400 Burnet Road
Maitland, FL 32751 Austin, TX 78758
 (407) 830-5522 x348, Fax: (407) 260-5366 (512) 838-1797, Fax: (512) 838-3822
 E-mail: cummings_roger@dpt.com E-mail: zeitler@ausvm6.vnet.ibm.com

Don Tolmie (HIPPI-6400-PH Technical Editor)
Los Alamos National Laboratory
CIC-5, MS-B255
Los Alamos, NM 87545
 (505) 667-5502, Fax: (505) 665-7793
 E-mail: det@lanl.gov

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

ii

Comments on Rev 0.8

This is a preliminary document undergoing lots
of changes. Many of the additions are just
place holders, or are put there to stimulate
discussion. Hence, do not assume that the
items herein are correct, or final – everything is
subject to change. This page tries to outline
where we are; what has been discussed and
semi-approved, and what has been added or
changed recently and deserves your special
attention. This summary relates to changes
since the previous revision. Also, previous
open issues are outlined with a single box, new
open issues ones are marked with a double bar
on the left edge of the box.

Changes are marked with change bars in the
margin. Minor changes, e.g., capitalization or
spelling, did not warrant a change bar unless
there were other substantive changes in the
paragraph. The list below just describes the
major changes, for detail changes please
compare this revision to the previous revision.

Please help us in this development process by
sending comments, corrections, and
suggestions to the Technical Editor, Don
Tolmie, of the Los Alamos National Laboratory,
at det@lanl.gov. If you would like to address
the whole group working on this document,
send the Message to hippi@network.com.

1. Deleted the definition for "HIPPI port" since
it wasn't used in the document.

2. Changed the definition of "log" to match
HIPPI-6400-SC.

3. In 4.6, changed the next to last sentence
from "...Source consumes..." to "...Source
end of the link consumes...".

4. In 4.9, changed the second sentence from
"The length..." to "The maximum
length...".

5. In 6.2, changed the lengths for all of the
VCs, e.g., VC0 went from 64 micropackets
+ Header to 68 micropackets + Header.
Added a note to explain the numbers.

6. In 6.6.3, changed "...user data, and may
carry Schedule Header." to "...payload.".

7. In 6.3.6, changed the first sentence to
match what is in HIPPI-6400-SC.

8. In table 2, changed "32 bytes of user data
or Schedule Parameters" to "32 bytes of
payload".

9. In 6.5, note 3, changed "...on every VC."
to "...on some VCs.".

10. In 6.6.2.1, deleted the note saying why the
particular Stomp code was chosen.

11. In 6, changed the last sentence from
"...integral number..." to "...integral
multiple...". In the second paragraph,
swapped the order of the last two
sentences.

12. In 7.2, added a reference for "RFC".
Deleted the entry for EtherType = x'0800'.
Changed "Non-scheduled HIPPI-FP..." to
"HIPPI-FP...".

13. In 7.3, changed the title from "Opaque
payload" to "Payload", and changed figure
10 the same way. Deleted "opaque" in
the text.

14. In 8.1, added the last paragraph about
Credit overflow.

15. In 8.4, changed "...triggered by 8.2..." to
"...triggered by the error conditions in
8.2...".

16. In 9.1.4, changed all of the words
"unspecified" to "undefined". In the note,
changed "...TYPEs." to "...TYPE values.".

17. In 12.1, added "Credit overflow" as a
cause for Reset.

18. In 12.3, added the sentence describing
where the time is measured. Changed the
time from 2 seconds to 0.5 seconds.

19. In figure 15, moved where the Hold-off
timer is shown.

20. In 12.3, changed the Hold-off timer value
from 5 seconds to 10 seconds.

21. In 14.1, changed the clock tolerance from
100 ppm to 200 ppm.

22. In table 6, added the Credit Overflow error.

23. In table 7, changed the Hold-off and Reset
timer values.

24. In 15.2, changed the minimum low-level
voltage from 0.08 V to 0 V. Changed the
max rise and fall times from 300 ps to 350
ps. Added terms for worst case pair-to-
pair, and within pair, skew.

25. In 15.4, added the sentence saying that
the Reserved pins are unconnected.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

iii

25. In 15.4, changed the parameters for near
end crosstalk to be done with a 100 ps
risetime pulse instead of a 500 ps risetime
pulse. Changed the risetime parameters
to 20% and 80%.

26. In 15.5, changed the outside diameter
spec to be a maximum value instead of
nominal plus tolerance. Changed the
jacket material from CL-2.2/FT6 to CL-
2.2P/FT6. Added the paragraph
describing how the cable shield should be
tied.

27. In figure 17, changed all of the pinouts to
match the proposal that was floated over
e-mail.

28. Deleted the clause labeled "XX Other
open issues".

29. In A.2, changed the parameters to
account for changing the clock tolerance
from 100 ppm to 200 ppm.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

iv

Contents
Page

Foreword..vii

Introduction...viii

1 Scope...1

2 Normative references..1

3 Definitions and conventions..2
3.1 Definitions...2
3.2 Editorial conventions..2
3.3 Acronyms and other abbreviations...3

4 System overview...3
4.1 Links...3
4.2 Virtual channels..3
4.3 Micropacket..4
4.4 Message...5
4.5 FRAME and CLOCK signals..5
4.6 Flow control...5
4.7 Retransmission...6
4.8 Check functions..6
4.9 Copper physical layer (optional)...6
4.10 Fiber physical layer (optional)..6

5 Service interface..8
5.1 Service primitives..8
5.2 Sequences of primitives..8

6 Micropacket contents...9
6.1 Bit and byte assignments..9
6.2 Virtual channel (VC) selector...9
6.3 Micropacket TYPEs...10
6.4 Sequence number parameters...10
6.5 Credit update parameters...11
6.6 Check functions..12

7 Message structure...14
7.1 MAC Header...14
7.2 LLC/SNAP header..14
7.3 Opaque payload...15

8 Source specific operations..15
8.1 Credit update indications on Source side..15
8.2 ACK indications on Source side..15
8.3 ACKs and credit updates to far end..15
8.4 Micropacket retransmissions...15

9 Destination specific operations...16
9.1 Link level processing...16
9.2 Check for Message protocol errors..16
9.3 Generating ACKs..17

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

v

10 Signal line encoding..18
10.1 Signal line bit assignments..18
10.2 Source-side encoding for dc balance..20
10.3 Destination-side decoding...20
10.4 FRAME signal...21

11 Link training...21

12 Initialization and Shutdown..23
12.1 Link Reset...23
12.2 Initialize...23
12.3 Link Shutdown..23

13 Maintenance and control features...25
13.1 Logged errors...25
13.2 Timeouts...25

14 Timing...25
14.1 Source CLOCK signals..25
14.2 Destination CLOCK signals...25
14.3 FRAME, Data, and Control signals..27

15 Copper interface (optional)...27
15.1 General...27
15.2 Electrical output interface..27
15.3 Electrical input interface..27
15.4 Electrical connector...27
15.5 Cable specifications..28

16 Optical interface (optional)...28
16.1 General...28
16.2 Optical output interface...28
16.3 Optical input interface...28
16.4 Optical connector..28
16.5 Optical cable specifications...28

xx Other Open Issues......................................Error! Bookmark not defined.

Tables

Table 1 – CRC coverages in a 128-byte Message...7
Table 2 – Micropacket contents summary..11
Table 3 – Signal line bit assignments in a 16-bit system..............................18
Table 4 – Signal line bit assignments in an 8-bit system..............................19
Table 5 – 4b/5b line coding...20
Table 6 – Summary of logged errors..26
Table 7 – Summary of timeouts...26
Table A.1 – Parallel LCRC input bits..31
Table A.2 – Parallel ECRC input bits..32
Table A.3 – 16-bit LCRC generator equations..33
Table A.4 – 64-bit LCRC generator equations..34
Table A.5 – 80-bit LCRC checker equations...35
Table A.6 – 64-bit ECRC generator / checker equations..............................36

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

vi

Figures

Figure 1 – System overview...4
Figure 2 – HIPPI-6400-PH link showing signal lines..4
Figure 3 – Logical micropacket format and naming conventions....................5
Figure 4 – Message format..5
Figure 5 – Reverse direction control information...7
Figure 6 – HIPPI-6400-PH service interface...8
Figure 7 – Control bits summary..9
Figure 8 – LCRC implementation example...13
Figure 9 – ECRC implementation example..13
Figure 10 – Header micropacket contents..14
Figure 11 – 16-bit system micropacket...21
Figure 12 – 8-bit system micropacket...21
Figure 13 – 16-bit system training sequence..22
Figure 14 – 8-bit system training sequence..22
Figure 15 – Initialize and Link Reset operations...24
Figure 16 – Signal path...27
Figure 17 – Bulkhead connector pin assignments..29
Figure A.1 – Encode / decode circuit example...30
Figure A.2 – Parallel LCRC generator example..31
Figure A.3 – Parallel LCRC checker example...32
Figure A.4 – Parallel ECRC example..33

Annex

A Implementation comments...30
A.1 4b/5b encoding and decoding..30
A.2 Frequency differences between Source and Destination.................30
A.3 LCRC parallel implementation...31
A.4 ECRC parallel implementation..32
A.5 Undetected errors...32

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

vii

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a physical-level, point-to-point, full-
duplex, link interface for reliable, flow-controlled, transmission of user data at
6400 Mbit/s, per direction, over parallel copper cables across distances of 50
m, or over parallel fiber-optic cables across distances of 200 m. Small fixed-
size micropackets provide an efficient, low-latency, structure for small
transfers, and a component for large transfers.

This standard provides an upward growth path for legacy HIPPI-based
systems.

This document includes one annex which is informative and is not considered
part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Information Technology Industry Council, 1250 Eye Street, NW, Suite 200,
Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of the standard does not necessarily imply that all
committee members voted for approval. At the time it approved this
standard, the X3 Committee had the following members:

(List of X3 Committee members to be included in the published standard
by the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this
standard, had the following participants:

(List of X3T11 Committee members, and other active participants, at the
time the document is forwarded for public review, will be included by the
Technical Editor.)

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

viii

Introduction

This American National Standard specifies a physical-level, point-to-point, full-
duplex, link interface for reliable, flow-controlled, transmission of user data at
6400 Mbit/s, per direction, over parallel copper cables across distances of 50
m, or over parallel fiber-optic cables across distances of 200 m. Small fixed-
size micropackets provide an efficient, low-latency, structure for small
transfers, and a component for large transfers.

Characteristics of a HIPPI-6400-PH physical-layer interface include:

– User data transfer bandwidth of 6400 Mbit/s (800 MByte/s).

– A full-duplex link capable of independent full-bandwidth transfers in
both directions simultaneously.

– Four virtual circuits providing a limited multiplexing capability.

– A fixed size transfer unit, i.e., a 32-byte micropacket, for hardware
efficiency.

– A small transfer unit resulting in low latency for short Messages, and a
component for large transfers.

– Credit-based flow control that prevents buffer overflow.

– End-to-end, as well as link-to-link, checksums.

– Automatic retransmission of errored data providing guaranteed, in-
order, reliable, data delivery.

– An ac coupled parallel electrical interface for limited distance
applications, and a parallel fiber-optic interface for longer distances.

– Support for carrying legacy HIPPI-800 and HIPPI-1600 traffic.

– A physical-layer interface continuing the HIPPI tradition of simplicity.

working draft proposed American National Standard ANSI X3.xxx-199x

1

High-Performance Parallel Interface –
6400 Mbit/s Physical Layer (HIPPI-6400-PH)

1 Scope

This American National Standard specifies a
physical-level, point-to-point, full-duplex, link
interface for reliable, flow-controlled,
transmission of user data at 6400 Mbit/s, per
direction, over parallel copper cables across
distances of 50 m, or over parallel fiber-optic
cables across distances of 200 m. Small fixed-
size micropackets provide an efficient, low-
latency, structure for small transfers, and a
component for large transfers.

Specifications are included for:

– automatic retransmission of errored data;

– the format of a small data transfer unit
called a micropacket;

– a Message structure that includes routing
information for network applications;

– end-to-end, as well as link-to-link,
checksums;

– the timing requirements of the parallel
signals;

– a parallel interface using copper coaxial
cable;

– a parallel interface using ribbon fiber-optic
cable;

– a link-level protocol tuned for a maximum
distance of 1 km.

2 Normative references

The following American National Standards
contain provisions which, through reference in
this text, constitute provisions of this American
National Standard. At the time of publication,
the editions indicated were valid. All standards
are subject to revision, and parties to
agreements based on this standard are
encouraged to investigate the possibility of
applying the most recent editions of the
standards listed below.

ANSI X3.210-1992, High-Performance Parallel
Interface, Framing Protocol (HIPPI-FP)

ANSI X3.xxx-199x, High-Performance Parallel
Interface, 6400 Mbit/s Switch Control (HIPPI-
6400-SC)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks:
Overview and architecture (formerly known as
IEEE Std 802.1A, Project 802: Local and
Metropolitan Area Network Standard —
Overview and Architecture)

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control

American National Standard
for Information Technology –

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

2

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 acknowledge (ACK): Confirmation that
the Destination has received the micropacket
without errors.

3.1.2 administrator: A station management
entity providing external management control.

3.1.3 credit: A credit corresponds to one
micropacket's worth of buffer space available in
the Destination's VC buffer.

3.1.4 Destination: The equipment that
receives the data.

3.1.5 Final Destination: The equipment that
receives, and operates on, the payload portion
of the micropackets. This is typically a host
computer system, but may also be a translator,
bridge, or router.

3.1.6 link: A full-duplex connection between
HIPPI-6400-PH devices.

3.1.7 log: The act of making a record of an
event for later usage.

3.1.8 Message: An ordered sequence of one
or more micropackets that have the same VC.
The first micropacket is a Header micropacket.
The last micropacket, which may also be the
first micropacket, has the TAIL bit set. (See
4.4.)

3.1.9 micropacket: The basic transfer unit
consisting of 32 data bytes and 64 bits of
control information.

3.1.10 optional: Characteristics that are not
required by HIPPI-6400-PH. However, if any
optional characteristic is implemented, it shall
be implemented as defined in HIPPI-6400-PH.

3.1.11 Originating Source: The equipment
that generates the payload portion of the
micropackets. This is typically a host computer
system, but may also be a translator, bridge, or
router.

3.1.12 Source: The equipment that transmits
the data.

3.1.13 syndrome: The value (should be zero)
obtained by exclusive ORing the calculated
CRC value with the CRC value received with the
micropacket.

3.1.14 Universal LAN MAC Address (ULA):
The 48-bit MAC address specified by the IEEE
802 Overview Standard.

3.1.15 Virtual Channel (VC): One of four
logical paths within each direction of a link.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with
other uses of the same words (e.g., FRAME).
Any lowercase uses of these words have the
normal technical English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and
the rest lowercase (e.g., Block, Source). Any
lowercase uses of these words have the normal
technical English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement. The word should when used in
this standard, states a recommendation.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

3

3.2.1 Binary notation

Binary notation is used to represent relatively
short fields. For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent
some fields. For example a two-byte field
containing a binary value of b'11000100
00000011' is shown in hexadecimal format as
x'C403'.

3.3 Acronyms and other abbreviations

ACK acknowledge indication
CR credit amount parameter
CRC cyclic redundancy check
ECRC end-to-end CRC
HIPPI High-Performance Parallel

Interface
LCRC link CRC
lsb least significant bit
MAC Media Access Control
msb most significant bit
ns nanoseconds
ps picoseconds
RSEQ receive sequence number
TSEQ transmit sequence number
ULA Universal LAN MAC Address
ULP upper-layer protocol
VC virtual channel
VCR virtual channel Credit selector
µs microseconds
Ω ohms

4 System overview

This clause provides an overview of the
structure, concepts, and mechanisms used in
HIPPI-6400-PH. Figure 1 gives an example of
a HIPPI-6400 system.

4.1 Links

HIPPI-6400-PH defines a point-to-point physical
link for transferring micropackets. The physical
links, as shown in figure 2, are bi-directional.
The logical links are simplex, i.e., the data
inbound and outbound are completely
separate. Some control information, e.g.,
credit, flows in the reverse direction, and it is
included in the micropackets flowing in the
reverse direction. This is why the physical links
must be bi-directional with information flowing in
both directions simultaneously.

A link is composed of two Sources that transmit
information, and two Destinations that receive
information. Each end of a link has a Source
and a Destination.

The data path is 16 bits wide for a copper
implementation, and is eight bits wide for a fiber
implementation. The control path is one-fourth
the width of the data path, e.g., the control
path for a copper implementation would be 4
bits wide. CLOCK, CLOCK_2, and FRAME are
individual signals carried on separate
conductors. The CLOCK_2 signal is only used
in 16-bit systems.

4.2 Virtual channels

Four virtual channels, VC0, VC1, VC2, and VC3
are available in each direction on each link.
The VCs are assigned to specific Message
sizes and transfer methods. All of the
micropackets of a Message are transmitted on
a single VC, i.e., the VC number does not
change as the micropackets travel from the
Originating Source to the Final Destination over
one or more links. The VCs provide a
multiplexing mechanism which can be used to
prevent a large Message from Blocking a small
Message until the large Message has
completed.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

4

HIPPI-6400
Node

S

D

HIPPI-6400
Node

HIPPI-6400
Switch

D

S

S

D

D

S

D S

S D

D S

S DS D

HIPPI-800
Node

D = Destination

D = Final Destination

S = Source

S = Originating Source

= HIPPI-6400

= Other
Translation
Function

D S

S D

D S

S DS D

Translation
Function

Other
Media
Node

Figure 1 – System overview

DATA

CONTROL

FRAME

CLOCK

DATA

CONTROL

FRAME

CLOCK

16(8)

4(2)

16(8)

4(2)

DestinationSource

SourceDestination

DATA

CONTROL

FRAME

CLOCK

DATA

CONTROL

FRAME

CLOCK

(Numbers in parenthesis are for an 8-bit system.
CLOCK_2 is only used in 16-bit systems.)

CLOCK_2 CLOCK_2

CLOCK_2CLOCK_2

1(1)

1(1)

1(0)

1(1)

1(1)

1(0)

Figure 2 – HIPPI-6400-PH link showing signal
lines

4.3 Micropacket

Micropackets are the basic transfer unit. As
shown in figure 3 a micropacket is composed of
32 data bytes and 64 bits of control
information. At 6400 Mbit/s a micropacket is
transmitted every 40 ns, with Null micropackets
transmitted when other micropackets are not
available. Credit and retransmit operations are
performed on a micropacket basis.

The 64 bits of control information in each
micropacket includes parameters for:

– selecting a VC;

– detecting missing micropackets;

– denoting the types of information in the
micropacket;

– marking the last micropacket of a Message;

– signalling that the Message was truncated
at its originator, or damaged en-route;

– passing credit information from the
Destination to the Source;

– Link-level and end-to-end checksums.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

5

d31.0d31.2d31.4d31.6d30.0d30.2d30.4d30.6

d00.0d00.2d00.4d00.6

c00c02c04c06c08c10c12c14c56c58c60c62

Data byte DB31

7
2 2 2 2 2 2 2 2

6 5 4 3 2 1 0

Data byte DB30

Data byte DB00

d31.1d31.3d31.5d31.7d30.1d30.3d30.5d30.7

d00.1d00.3d00.5d00.7

7
2 2 2 2 2 2 2 2

6 5 4 3 2 1 0

c01c03c05c07c09c11c13c15c57c59c61c63

........

32 Data bytes (256 bits)

64 Control bits

d01.0d01.2d01.4d01.6

Data byte DB01

d01.1d01.3d01.5d01.7

 Naming conventions:
Data bytes are labeled capital DB and a two-digit number, e.g., DB00.
In a parameter that uses multiple bytes, the most-significant byte is the lowest-numbered byte.
Data bits are labeled lower case d, a two-digit byte number, and a one-digit bit number, e.g., d31.7.
Control bits are labeled lower case c and a two-digit number, e.g., c00.
In a parameter that uses multiple bits, the most-significant bit is the highest-numbered bit.

Figure 3 – Logical micropacket format and naming conventions

4.4 Message

As shown in figure 4, a Message is an ordered
sequence of one or more micropackets which
have the same VC. The first micropacket of a
Message, i.e., the Header micropacket,
contains information used to route through a
HIPPI-6400 fabric. The last micropacket of the
Message is marked with the TAIL bit.

M
ic

ro
pa

ck
et

T
ra

ns
m

is
si

on
 o

rd
er

1

2

3

c63–c00Header information

1st 32 bytes of Mesage data

2nd 32 bytes of Message data

Last bytes of Message data

c63–c00

c63–c00

c63–c00n

..
..

..
..

..
.

..
..

..
..

..
.

Figure 4 – Message format

4.5 FRAME and CLOCK signals

The FRAME signal, carried on a separate signal
line, marks a micropacket's beginning. Both
edges of either the CLOCK or CLOCK_2
signals, also carried on separate signal lines,
are used for strobing the data. The data,
control, and FRAME signals from a Source are
synchronous with that Source's CLOCK and
CLOCK_2 signals. The CLOCK rate is
dependent on the width of the data bus, e.g., a
16-bit data bus utilizing 4b/5b encoding
requires the CLOCK line to run at 250 MHz and
each data and control line may transition every
2 ns.

4.6 Flow control

Credit-based flow control is used. As shown in
figure 5, the credits are assigned on a VC
basis, i.e., VC0's credits are separate from
VC1's credits. The Destination end of a link

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

6

grants credits to match the number of free
receive buffers for a particular VC. The Source
end of the link consumes credits as it moves
micropackets from the VC Buffers to the Output
Buffer. Note that flow control is on a link basis,
i.e., hop-by-hop.

4.7 Retransmission

Go-back-N retransmission is used. The CRCs in
each micropacket are checked at the
Destination side of a link; at the Input Buffer in
figure 5. Correct micropackets are
acknowledged, incorrect micropackets are
discarded. Retransmission of incorrect
micropackets is automatic. Note that
retransmission is independent of the VC used,
and also independent of the credit information,
i.e., retransmission occurs between the Output
and Input Buffers in figure 5 while VC and credit
information pertains only to the VC Buffers.
Retransmission is on a link basis, i.e., hop-by-
hop.

4.8 Check functions

As shown in table 1, two 16-bit cyclic
redundancy checks (CRCs) are used, and they
use different polynomials. The end-to-end CRC
(ECRC) covers the data bytes of all of the
micropackets in a Message, i.e., the Header
micropacket and all of the Data micropackets (if
any) up to this point in a Message. The ECRC
does not cover the control bits. The ECRC is
unchanged from the Originating Source to the
Final Destination. The ECRC is accumulated
over an entire Message, i.e., it is not re-
initialized for intermediate Data micropackets.
(See 6.6.3.)

The link CRC (LCRC) covers all of the data and
control bits of a micropacket, with the exception
of itself. The LCRC is initialized for each
micropacket, and must be calculated fresh for
each link since other control fields change.

The combination of two 16-bit CRCs provides a
stronger check than a single 16-bit CRC for link-
level checking of individual micropackets. In
addition, the 16-bit ECRC provides checking
over a whole Message.

4.9 Copper physical layer (optional)

The optional HIPPI-6400-PH copper variant
uses a cable with 46 conductor pairs, 23 in
each direction, and an overall shield. The
maximum length is dependent upon the quality
of the cable. The signals are ac coupled to the
cable to accommodate some difference in the
ground potential between the equipment. (See
clause 15.)

4.10 Fiber physical layer (optional)

The optional HIPPI-6400-PH fiber variant uses
a fiber-ribbon cable with 12 multi-mode fibers in
each direction. The length is limited to 1 km by
the protocol, (e.g., by the size of the TSEQ,
RSEQ, and CR parameters), and may be
limited to shorter distances by the physical
constraints of the optical system. (See clause
16.) A non-standard double-wide optical
implementation is described in annex B.

Open Issue – Someone from E-Systems needs to
provide the text describing the double-wide optical
interface.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

7

Input
Buffer

VC0 Buffer

VC2 Buffer

VC3 Buffer

VC1 Buffer

ACKs are generated independent of the VC
number, and sent to the Source in the reverse
direction micropacket control information.

credit(VC,amount)

Credits are generated, on a VC basis when data
exits from the VC buffer, and sent to the Source in
the reverse direction micropacket control information.

VC0 Buffer

VC2 Buffer

VC3 Buffer

VC1 Buffer
Output
Buffer

ACK(seq)

DestinationSourceCredits are consumed as a
micropacket moves from the
VCn Buffer to the Output Buffer

TSEQ

RSEQ

Figure 5 – Reverse direction control information

Table 1 – CRC coverages in a 128-byte Message

Micropacket
number

Data Bytes
DB00 – DB31

contents

ECRC
coverage

LCRC
coverage

1 Header Header Header, c00 – c47

2 Bytes 1 – 32 Header and Bytes 1 – 32 Bytes 1 – 32, c00 – c47

3 Bytes 33 – 64 Header and Bytes 1 – 64 Bytes 33 – 64, c00 – c47

4 Bytes 65 – 96 Header and Bytes 1 – 96 Bytes 65 – 96, c00 – c47

5 Bytes 97 – 128 Header and Bytes 1 – 128 Bytes 97 – 128, c00 – c47

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

8

5 Service interface

This clause specifies the services provided by
HIPPI-6400-PH. The intent is to allow ULPs to
operate correctly with this HIPPI-6400-PH. How
many of the services described herein are
chosen for a given implementation is up to that
implementor; however, a set of HIPPI-6400-PH
services must be supplied sufficient to satisfy
the ULP(s) being used. The services as
defined herein do not imply any particular
implementation, or any interface.

Figure 6 shows the relationship of the HIPPI-
6400-PH interfaces.

HIPPI-6400

Upper-layer
protocols

Data transfer
service interface

(64_...)

Station
management

(SMT)
Management

service interface
(64SM_...)

Figure 6 – HIPPI-6400-PH service interface

5.1 Service primitives

The primitives, in the context of the state tran-
sitions in clause 5, are declared required or
optional. Additionally, parameters are either
required, conditional, or optional. All of the
primitives and parameters are considered as
required except where explicitly stated other-
wise.

HIPPI-6400-PH service primitives are of four
types.

– Request primitives are issued by a service
user to initiate a service provided by the
HIPPI-6400-PH. In this standard, a second
Request primitive of the same name shall not
be issued until the Confirm for the first
request is received.

–Confirm primitives are issued by the HIPPI-
6400-PH to acknowledge a Request.

– Indicate primitives are issued by the HIPPI-
6400-PH to notify the service user of a local
event. This primitive is similar in nature to an
unsolicited interrupt. Note that the local event
may have been caused by a service Request.
In this standard, a second Indicate primitive
of the same name shall not be issued until
the Response for the first Indicate is received.

– Response primitives are issued by a service
user to acknowledge an Indicate.

5.2 Sequences of primitives

The order of execution of service primitives is
not arbitrary. Logical and time sequence
relationships exist for all described service primi-
tives. Time sequence diagrams are used to
illustrate a valid sequence. Other valid
sequences may exist. The sequence of events
between peer users across the user/provider
interface is illustrated. In the time sequence
diagrams the HIPPI-6400-PH users are de-
picted on either side of the vertical bars while
the HIPPI-6400-PH acts as the service provider.

NOTE - The intent is to flesh out the service primitives
similar to what is in HIPPI-PH today.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

9

6 Micropacket contents

6.1 Bit and byte assignments

As shown in figure 3, each micropacket shall
consist of 32 data bytes and 64 bits of control
information. The data bytes shall be numbered
DB00 - DB31. DB00 shall be transmitted first.
The data bits in the micropacket shall be
numbered dxx.y where xx is the byte number
and y is the bit number in the byte.

The 64 bits of control information shall be
numbered as bits c63 – c00. Control bit c00
shall be transmitted first. As shown in figure 3,
a field with a numerical value shall have its
most-significant bit in the highest numbered bit
position.

The control information shall contain the
following parameters located in the bits
specified. The Source side of a link supplies all
of the parameters, except for RSEQ, VCR and
CR which come to the Source from its local
Destination side. The VC parameter comes
from the Originating Source. The TAIL, TYPE,
and ECRC parameters normally come from the
Originating Source, but may under error
conditions come from an intermediate device
(see 9.2.3 and 9.2.4).

VC (2 bits, c00–c01) – The virtual channel
selector. (See 6.2.)

TYPE (4 bits, c02–c05) – Identifies the type
of information within the micropacket. (See
6.3.)

TAIL (1 bit, c06) – TAIL = 1 identifies the last
micropacket of a Message. TAIL = 0 means
that more micropackets for this Message
follow.

ERROR (1 bit, c07) – ERROR = 1 means that
an unrecoverable error has been detected in
the Message, do not check the ECRC.
ERROR = 0 means that the Message is OK
so far. (See 9.1.3.)

VCR (2 bits, c08–c09) – Virtual channel
number associated with credit addition. (See
6.5.)

CR (6 bits, c10–c15) – Amount of credit to
add to the virtual channel specified in VCR.
(See 6.5.)

RSEQ (8 bits, c16–c23) – Sequence number
associated with micropacket ACK indication.
(See 6.4.)

TSEQ (8 bits, c24–c31) – Sequence number
of transmitted micropacket. (See 6.4.)

ECRC (16 bits, c32–c47) – End-to-end
checksum covering all of the data bytes up to
this point in a Message, including those in the
Header micropacket. (See 6.6.)

LCRC (16 bits, c48–c63) – Link level
checksum covering the 32 data bytes, and
the c00 through c47 control bits, in this
micropacket. (See 6.6.)

c15 c00

c31 c16

c47 c32

c63 c48

VCTE TYPEVCRCR

RSEQTSEQ

ECRC

LCRC

Note – Transmission order is top to bottom, and right
to left, in 4-bit groups, as shown in tables 3 and 4.
The most-significant-bit of a parameter is at the left
end of its field.

Figure 7 – Control bits summary

6.2 Virtual channel (VC) selector

Four virtual channels shall be available in each
direction on a link. Messages on the virtual
channels shall be assigned as follows:

– VC0 = Messages with a maximum size of
68 data micropackets (2176 bytes) plus a
Header micropacket.

– VC1 = Messages with a maximum size of
4100 data micropackets (~128 KBytes) plus a
Header micropacket. Also carries Admin
Request Messages.

– VC2 = Messages with a maximum size of
4100 data micropackets (~128 KBytes) plus a
Header micropacket. Also carries Admin
Response Messages.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

10

– VC3 = Messages with a maximum size of 4
GBytes. Each Message shall contain a
Header micropacket as the first micropacket
of the Message.

NOTE – The Message size was picked to be an even
binary number plus up to 128 bytes for upper-layer
protocol headers. For example, VC0's maximum
Message size is 69 micropackets: one Header
micropacket, four micropackets carrying 128 bytes
of upper-layer protocol, and 64 micropackets
carrying 2048 bytes of user payload.

6.3 Micropacket TYPEs

The 4-bit TYPE parameter shall indicate the
contents of the micropacket.

Micropackets whose TYPE < x'8', or whose
TYPE = x'A', are provided for control at the link
level or for credit update. These micropackets
are not loaded into any VC Buffer (see figure 5)
at the Destination despite the VC field being
transmitted as x'0'. As such, the Source need
not have credit available for VC0 prior to
sending these micropackets, and the
Destination shall not generate additional VC0
credit as a result of having received these
micropackets.

Only micropackets whose TYPE ≥ x'8' shall be
retransmitted.

Undefined TYPE values are reserved for future
use. Actions to be taken as a result of
receiving an undefined TYPE are detailed in
9.1.4.

6.3.1 TYPE = link control micropackets

Control micropackets operate at the link level,
do not carry any user data, acknowledgments,
or credit update information. (See clause 12.)
Control micropackets include:

– Reset (TYPE = x'2') – Sent to initiate a Link
Reset operation. (See 12.1.)

– Reset_ACK (TYPE = x'3') – The receiving
device has completed the Link Reset operation.

– Initialize (TYPE = x'4') – Sent to initiate an
Initialization operation. (See 12.2.)

– Initialize_ACK (TYPE = x'5') – The receiving
device has completed the Initialization
operation.

6.3.2 TYPE = Null micropackets

Null micropackets (TYPE = x'7') are gap-fillers,
and shall be used to keep the link active when
there are no other micropackets to transmit.
Null micropackets may carry ACK indications.

6.3.3 TYPE = Data micropackets

Data micropackets (TYPE = x'8') carry payload.

6.3.4 TYPE = Header micropackets

Header micropackets (TYPE = x'9') carry routing
and control information.

6.3.5 TYPE = Credit-only micropackets

When credits are available, and there are no
Data micropackets to send, then Credit-only
micropackets (TYPE = x'A') are used to carry
credit update information, and
acknowledgments.

6.3.6 TYPE = Admin micropackets

Admin micropackets (TYPE = x'F') are used for
support and initialization of HIPPI-6400 links,
elements, and systems. Admin micropacket
contents and uses are specified in HIPPI-6400-
SC.

6.4 Sequence number parameters

The transmit sequence number (TSEQ) shall
increment by one for each micropacket
transmitted whose TYPE ≥ x'8'. TSEQ shall
wrap from x'FE' to x'00'. The receive sequence
number (RSEQ) shall be used to acknowledge
(ACK) these micropackets. RSEQ shall equal
the TSEQ of the most recent micropacket being
acknowledged. TSEQ shall begin with the
value = x'00' after a Link Reset. RSEQ = x'FF'
indicates that no ACK indication is being
transmitted (used while the link fills with
micropackets after a Link Reset).

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

11

Table 2 – Micropacket contents summary

Reset/
Initialize

Null Credit-only Header Data Admin

Data Bytes
contents

0* 0* 0*
32 bytes of

header
information

(see 7.1)

32 bytes of
payload

Administrative
information

VC 0* 0* 0* any any Requests on VC1
Responses on VC2

TYPE (hex) 2,3,4,5 7 A 9 8 F

TAIL 1* 0* 0*
= 1 on last

micropacket
of Message

= 1 on last
micropacket
of Message

1

ERROR 0* 0* 0 = 1 if error = 1 if error = 1 if error

TSEQ x'FF' x'FF' increments increments increments increments

RSEQ 1* ACK ACK ACK ACK ACK

VCR 0* 0* any any any any

CR 0* 0* any any any any

LCRC single single single single single single

ECRC single single single accumulating accumulating single
0* = transmit all bits of this field as 0's, a receiver must permit any value
1* = transmit all bits of this field as 1's, a receiver must permit any value
any = any data value as appropriate
single = this CRC is calculated and checked for this single micropacket
 accumulating = ECRC as defined in 6.6.3

NOTES

1 The TSEQ and RSEQ parameters are independent
of the virtual channel used to transmit the
micropacket.

2 The TSEQ and RSEQ parameters are local to a
specific link. For example, a micropacket that
transverses more than one link will most likely have
different TSEQ numbers on the different links.

3 The first micropacket with TYPE ≥ x'8' following a
stomped micropacket (see 6.6.2.1) uses the same
TSEQ value as in the stomped micropacket since
that TSEQ value was not consumed.

The wrap at x'FE' shall be taken into account
when processing ACK indications. For
example, if the previous ACK indication had
RSEQ = x'F7', and an ACK indication with
RSEQ = x'03' is received, then the
micropackets whose TSEQ value = x'F8'
through x'FE', and from x'00' through x'03', are
acknowledged and their memory may be
reused by the Source.

6.5 Credit update parameters

The Destination shall insert the VCR and CR
parameters in micropackets to inform the
Source that CR number of micropacket buffers
have been freed up for the VC indicated by
VCR. The Source shall increase its Credit
Counter for this virtual channel by the value in
CR. The Source Credit Counter range shall be
255, and the number of outstanding credits
shall be ≤ 255.

NOTES

 1 The CR value is an incremental update value, not
the number of buffers currently available in the
Destination.

2 At 40 ns per micropacket, and 5 ns per meter of
cable, each credit is equivalent to about 8 meters of
cable. Hence, a Credit Count, and Destination
buffer capacity per virtual channel, of 255 will
support full bandwidth on a 1 km link when round trip

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

12

time is taken into account and Destination latency is
low.

3 If the Destination does not send adequate credits
then the Source may not be able to send on some
VCs.

6.6 Check functions

6.6.1 Intended use of CRCs

Two 16-bit cyclic redundancy checks (CRCs)
shall be used. The link CRC (LCRC) checks all
of the data bytes and control bits in a single
micropacket. The LCRC shall be generated by
a link's Source, and checked by the same link's
Destination, i.e., it is local to a link.

The end-to-end CRC (ECRC) checks all of the
data bytes of a Message, i.e., it may cover
multiple micropackets. The ECRC shall be
generated by the Originating Source, and
should be passed unchanged through
intermediate link-level devices. The ECRC shall
be checked at each Destination in the path.
See 9.1 for ECRC error operations.

While this standard covers the link level and
host interface, other documents may require
intermediate link-level devices to carry the
ECRC across them, for example, across
switches. Link-level devices, as described here,
are devices that do not operate on the payload
portion of data micropackets.

6.6.2 Link-level CRC (LCRC)

The link CRC (LCRC) shall cover all of the data
bytes, and the control bits except for itself. The
LCRC generator and checker shall be initialized
to all ones (x'FFFF') for each micropacket.

The LCRC polynomial shall be:

x16 + x12 + x5 + 1

Figure 8 is an example serial implementation.
The LCRC may be implemented in a parallel
fashion rather than serial, but must produce the
same results as the serial example. The c63
through c48 bits are the LCRC bits in the
control word. The incoming data and control
bits are exclusive OR'd with c48 to generate a

sum value; the sum value is exclusive OR'd with
selected control bits as they are shifted right
once each bit period. The data and control bits
shall be input to the generator in transmission
sequence, i.e., 64 data bits, 16 control bits, 64
data bits, 16 control bits, etc. The sequence is
d00.0, d00.1, d00.2, ...d00.7, d01.0...d01.7,
...d07.7, c00, c01, c02...c15, d08.0...d15.7,
c16...c31, d16.0...d23.7, c32...c47,
d24.0...d31.7. Refer to tables 3 and 4 for the
transmission sequence. After passing all 304
input bits, c63-through-c48 contain the most-
significant through least-significant bits of the
LCRC.

At the destination, the LCRC check may be
implemented by clocking the entire
micropacket, including the LCRC parameter
(c63..c48), into either a serial or parallel
checker. In this case, a residue is available in
the checker register after the last clock rather
than a syndrome. If this check method is used,
a residue of x'0000' indicates no errors, and
x'06A9' indicates that a "stomp" code was
received.

See 9.1.1 for details of a Destination's actions
when checking the LCRC. See annex A.3 for
the equations to generate the LCRC in a
parallel fashion.

6.6.2.1 Stomp code at Source

A Source may decide during the course of
transmitting a micropacket that it wishes to
"nullify" that transmission. This shall be done
by XORing a "stomp" code of x'874D' with the
LCRC that it has calculated for the micropacket.
The Source shall treat a "stomped" micropacket
as if it never occurred, i.e., not save the
"stomped" micropacket in the retransmit buffer,
and not increment the TSEQ number since the
TSEQ number was not consumed.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

13

Data in

= exclusive OR

c63 c62 c61 c60 c59 c58 c57 c56 c55 c54 c53 c52 c51 c50 c49 c48

Figure 8 – LCRC implementation example

Data in

= exclusive OR

c47 c46 c45 c44 c43 c42 c41 c40 c39 c38 c37 c36 c35 c34 c33 c32

Figure 9 – ECRC implementation example

6.6.2.2 Stomp code at Destination

If the Destination detects a "stomp" code (see
6.6.2), then an LCRC error shall not be logged
(see 9.1.1).

6.6.3 End-to-end CRC (ECRC)

The end-to-end CRC (ECRC) shall include only
the micropacket's data bytes, not the control
bits, in its calculation. The ECRC shall include
all of a Message's date bytes up to this point in
the Message, i.e., the data bytes in the Header
micropacket and in all of the Data micropackets
up to this point in the Message.

All Sources not generating the original ECRC
shall check the ECRC prior to transmission, and
if the ECRC is in error then set ERROR = 1 in
this micropacket's control bits. An
ECRC_Source_Error shall be logged for only
the first occurrence of this error in a Message
(see 13.1). This aids in error isolation and
prevents endless retransmission loops.

The ECRC generator polynomial shall be:

x16 + x12 + x3 + x + 1

The ECRC is calculated and maintained
independently for each VC. The ECRC

checker and generator for a VC shall be
initialized to all ones (x'FFFF') for each
Message. Figure 9 is an example ECRC serial
implementation. The ECRC may be
implemented in a parallel fashion rather than
serial, but must produce the same results as
the serial example. The c47 through c32 bits
are the ECRC bits in the control word. The
incoming data bits are exclusive OR'd with c32
to generate a sum value; the sum value is
exclusive OR'd with selected control bits as they
are shifted right once each bit period. The data
bits shall be input to the generator in
transmission sequence, i.e., d00.0, d00.1,
d00.2, ...d00.7, d01.0...d01.7, ...d31.7. Refer
to tables 3 and 4 for the transmission
sequence. After passing all 256 of the
micropacket's data bits, c47-through-c32
contain the most-significant through least-
significant bits of the ECRC for this micropacket.
The ECRC value will normally be different for
each micropacket of a Message since the
ECRC accumulates as the Message progresses
(see table 1).

See 9.1.3 for details of a Destination's actions
when checking the ECRC. See annex A.4 for
the equations to generate the ECRC in a 64-bit-
wide fashion.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

14

7 Message structure

As defined in 4.4, a Message is an ordered
sequence of one or more micropackets which
have the same VC, start with a Header
micropacket (TYPE = Header), and have TAIL =
1 in the last micropacket. Each VC may only
have a single Message in progress at any time.
Since only complete micropackets are
transmitted, a Message that is not an integral
multiple of 32 bytes in length shall be padded
in the last micropacket.

The Message header format is shown in figure
10 as a group of 32-bit words. The Media
Access Control (MAC) Header, and LLC/SNAP
header, shall reside in the first 24 bytes of all
Header micropackets. If a parameter uses
more than one byte, the lowest numbered byte
is the most-significant byte. The last eight
bytes of the Header may be used by other
protocols, and are not defined in this standard.

7.1 MAC Header

The MAC header shall be included in all HIPPI-
6400 Messages. The MAC header shall be in
the first micropacket (Header micropacket) of a
Message, and shall contain:

D_ULA (48 bits, DB00-DB05) – The IEEE 48-
bit ULA network address, as defined in
ANSI/IEEE Std 802, identifying the payload's
Destination.

S_ULA (48 bits, DB06-DB11) – The IEEE 48-
bit ULA network address, as defined in
ANSI/IEEE Std 802, identifying the payload's
Source.

M_len (32 bits, DB12-DB15) – The Message
length, in bytes, following the M_len field,
exclusive of any padding in the last
micropacket.

7.2 LLC/SNAP header

The LLC/SNAP header, as defined in ISO/IEC
8802-2 (ANSI/IEEE Std. 802.2), shall be
included in all Messages. The LLC/SNAP
header shall be 64 bits (DB16-DB23) and shall
immediately follow the MAC header in the first
micropacket (Header micropacket). The values
of the LLC/SNAP header subfields shall be:
DSAP = x'AA', SSAP = x'AA', Ctl = x'03', and the
three Org = x'00'. Codings of the EtherType
field shall be as assigned in the current
"Assigned Numbers" RFC1). For the
convenience of the reader, HIPPI-6400-specific
EtherTypes are listed below:

x'8180' = HIPPI-FP as specified in ANSI
X3.210. (See annex A.)
x'8181' = Scheduled Transfer, as specified in
ANSI X3.xxx, HIPPI-ST.
x'8182' = Locally administered.
x'8183' = Reserved

D_ULA

M_len

(lsb)

(lsb)MAC Header
D_ULA S_ULA

S_ULA

DSAP SSAP Ctl Org

Org Org EtherType
IEEE 802.2

 LLC/SNAP Header

Payload

Payload

Figure 10 – Header micropacket contents

1) RFC (Request For Comment) documents are working standards documents from the TCP/IP internetworking
community. Copies of these documents are available from numerous electronic sources or by writing to Network
Information Systems, SRI International, 333 Ravenswood Ave Room BJ291, Menlo Park, CA 94025.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

15

7.3 Payload

The eight bytes following the LLC/SNAP header
belong to the upper-layer protocol using this
Message. The payload bytes may be used to
carry additional headers, parameters, or data.

8 Source specific operations

8.1 Credit update indications on Source side

Credit update indications from the far end are
received on the local Destination side, and
passed to the local Source side, as shown in
figure 5. A credit update shall increase the
available credit, by the amount in the CR
parameter, on the virtual channel whose
number is the value in the VCR parameter.

If data is ready to be sent on a given VC, but
credits are exhausted for this VC (i.e., credit =
0) for the duration of a timeout period, then the
link is shut down (see 12.3), and a VC[0-
3]_Credit_Timeout_Error logged. The default
timeout value shall be 2 seconds (see 13.2).

If a credit update results in credit > 255 then
the link shall be reset (see 12.1) and a VC[0-
3]_Credit_Overflow_Error logged.

8.2 ACK indications on Source side

ACK indications (see 6.4 and 9.3) from the far
end are received on the local Destination side,
and passed to the local Source side, as shown
in figure 5. An ACK indication acknowledges all
of the transmitted micropackets whose TSEQ ≤
RSEQ, i.e., the memory allocated to these
micropackets may be re-used. RSEQ = x'FF',
which may occur immediately after a Reset
operation (see 9.3), shall be ignored.

The ACK indication timeout indicates that a
TSEQ was transmitted, but not acknowledged
for the length of time longer than the worst-
case round trip time possible for an
acknowledgment to occur. If the ACK
indication timeout expires, the Source shall
retransmit all micropackets, (see 8.4), that have
not been acknowledged, and shall log an
RSEQ_Missing_Error (see 13.1). The ACK
indication timeout default value shall be 12 µs

(see 13.2).

NOTE – The ACK indication timeout provides a
recovery mechanism even in the event of lost RSEQ
values due to link errors. Faster recovery may be
possible with other schemes, e.g., NAKs, but the
complexity required for the performance gain did not
seem worth it, especially since errors should be
infrequent.

If an illegal RSEQ value is received, the Source
shall retransmit all micropackets, (see 8.4), that
have not been acknowledged, and log an
RSEQ_Out_Of_Range_Error (see 13.1). An
illegal RSEQ is one that does not equal or fall
between the last successfully received RSEQ
and the highest transmitted but not
acknowledged TSEQ.

8.3 ACKs and credit updates to far end

The local Destination side sends ACK
indications and credit update information to the
far end by first queuing them to the local
Source side, as shown in figure 5. The Source
side shall transmit this information in
micropackets using the appropriate control bits.
Since the ACK indications and credit update
information do not share their fields with any
other parameters they can be sent with every
micropacket.

The local Destination may queue multiple ACK
indication RSEQ parameters before one is
transmitted by the local Source end. The
RSEQ parameter should be over-written so that
the ACK indication Message transmitted uses
the latest value of RSEQ.

8.4 Micropacket retransmissions

A retransmission sequence, as triggered by the
error conditions defined in 8.2, shall consist of
two consecutive training sequences (see 12)
followed by retransmission of all of the
unacknowledged micropackets in the Output
Buffer (see figure 5).

Multiple retransmissions may be required in the
event of poor link quality. The link shall be shut
down (see 12.3), and a Retransmission_Error
logged (see 13.1), if successful operation is not

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

16

achieved after a number of successive
retransmissions of the same data. The default
number is two, and it shall be programmable to
other values, including 1 and 4. The
mechanisms and procedures used to set
values, different from the default value are
outside the scope of this standard.

NOTE – This value may need to be larger to
accommodate lengthy noise hits.

Open Issue – The Retransmission_Error value will be
the same as the sum of the RSEQ_Missing_Error and
RSEQ_Out_Of_Range_Error. Instead should we count
the maximum number of times successive
retransmissions occur before achieving success?

Upon retransmission, the following parameters,
from the original micropacket, shall have the
same value in the retransmitted micropacket.

– VC
– TYPE
– TAIL
– ERROR
– TSEQ
– VCR
– CR
– ECRC

The following parameters may change as a
micropacket is retransmitted.

– RSEQ
– LCRC

9 Destination specific operations

9.1 Link level processing

The Destination shall process received
micropackets in the order of the following
subclauses. The unnumbered items within
each subclause may be checked in any order.
Note that no acknowledgment (i.e., with RSEQ)
shall be given for a micropacket that is
discarded.

9.1.1 Check received LCRC

– If LCRC syndrome = x'874D' (stomp code)
then the Destination shall discard the
micropacket, and not log an error.

– If LCRC syndrome ≠ x'0000', and ≠ x'874D'
(stomp code), then the Destination shall
discard the micropacket and log an
LCRC_Error.

9.1.2 Check received TSEQ

If no errors were detected in 9.1.1, and TSEQ ≠
x'FF', then the following checks shall be made.
TYPE < x'8' is an error. TYPE ≥ x'8', and TSEQ
is not one greater than the last non-x'FF', non-
stomped, TSEQ received, is also an error. In
either case, the micropacket shall be discarded.
Additionally, a TSEQ_Error shall be logged
unless no micropackets have been accepted
since the last TSEQ_Error was logged.

9.1.3 Check received ECRC

If no errors were detected in 9.1.1 or 9.1.2,
then the following checks shall be made.

– If ERROR = 0 and the ECRC syndrome ≠
x'0000', then the Destination shall discard the
micropacket and log an ECRC_Error.

– If ERROR = 1 and the ECRC syndrome ≠
x'0000', then the Destination shall process
the micropacket as if the ECRC were correct
(unless this is the Final Destination in which
case an error shall be signalled to the ULP).

9.1.4 Undefined TYPE

If TYPE = undefined (in the range of x'0' - x'7')
then the Destination shall treat the micropacket
as a Null micropacket. If TYPE = undefined (in
the range of x'8' - x'F') then intermediate
Destinations shall treat the micropacket as a
Data micropacket. Treatment by a Final
Destination is not specified by this standard.
For any undefined TYPE value, a VC[0-
3]_Undefined_TYPE_Error shall be logged and
the most recent offending TYPE value stored in
Undefined_TYPE_Value.

NOTE – The actions applied to Undefined TYPEs are
intended to allow for future use of the Undefined
TYPE values.

9.2 Check for Message protocol errors

Message protocol error checking (at the
Destination) shall be done on micropackets that
have not been discarded in 9.1 and its

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

17

subclauses. Since a Message is restricted to a
single Virtual Channel, all Message protocol
checking shall be applied to each Virtual
Channel independently. Credit-only (TYPE =
x'A') micropackets shall be ignored for the
purposes of Message protocol checking.
Otherwise, micropackets shall be checked in
the order received on each Virtual Circuit.

9.2.1 Admin missing TAIL bit

If TYPE = Admin, and Tail = 0, then the
Destination shall forward the Admin
micropacket with ERROR = 1, and TAIL = 1. A
VC[1-2]_Admin_Tail_Error shall be logged.

9.2.2 Missing start of Message

If a Message is missing the Header
micropacket (i.e., a micropacket with TYPE =
Data is received following a micropacket with
TAIL = 1, or a Link Reset operation) then the
Destination shall process the Data
micropacket(s) on this VC until a micropacket
with TYPE = Header or Admin is received. This
processing for the Data micropackets shall
consist of discarding the data bytes; their
control information shall be treated normally
and RSEQs shall be generated. The Header or
Admin micropacket shall be treated normally.
The Destination shall log a VC[0-
3]_Missing_Start_of_Message_Error for each
discarded Message; not log an error for each
discarded Data micropacket.

9.2.3 Missing end of Message

If the end of a Message is missing (i.e., TYPE =
Header or Admin following a Data, Header, or
undefined TYPE ≥ x'8' micropacket with TAIL =
0) then the Destination shall fabricate an end of
Message micropacket (Data Bytes = x'00', VC =
as received, TYPE = Data, TAIL = 1, ERROR =
1, other parameters as appropriate). The
Destination shall insert the fabricated
micropacket into the VC stream, and shall log a
VC[0-3]_Missing_End_of_Message_Error. The
Header or Admin micropacket shall be treated
normally.

9.2.4 Stall timeout

If a Message is in progress on a VC, that VC's
buffer is empty, and no Data micropackets

have been received within the Stall timeout
period, then the Destination shall fabricate an
end of Message micropacket (Data Bytes =
x'00', VC = as received, TYPE = Data, TAIL = 1,
ERROR = 1, other parameters as appropriate).
The Destination shall insert the fabricated
micropacket into the VC stream, and shall log a
VC[0-3]_Stall_Timeout_Error. This action
flushes the Message in progress. The default
value of the Stall timeout shall be 2 ms (see
13.2).

NOTE – Implementors are cautioned that the Stall
timeout may be triggered by a slow Source host. If
slow hosts are expected, then the Stall timeout
value may be set to a larger value to avoid
inadvertent actions.

9.2.5 No errors detected

If no errors are detected, and TYPE = Header
or Data, the micropacket shall be
acknowledged and delivered to the virtual
channel buffer designated by the VC
parameter.

If no errors are detected, and TYPE ≠ Header
or Data, the micropacket shall be processed by
the Destination.

9.3 Generating ACKs

The Destination acknowledges correctly
received micropackets by using the RSEQ
parameter of micropackets flowing in the
reverse direction. Multiple micropackets may
be acknowledged with a single RSEQ (e.g., if
micropackets with TSEQ = 0,1...7 are received,
transmitting RSEQ = 5 acknowledges
micropackets 0,1...5, but not 6 and 7). Only
micropackets that are not discarded due to
errors (see 9.1) and whose TYPE value is in the
range x'8' – x'F' shall be acknowledged. If the
Destination does not have a new value of
RSEQ to send, it shall repeat the last RSEQ
value.

Once an error is detected that causes a
micropacket not to be acknowledged, the
Destination shall not change the RSEQ value
until correctly receiving a micropacket with
TSEQ = RSEQ + 1 (the retransmission of the
micropacket that was in error). Hence, an error

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

18

will result in a given RSEQ value being
continually sent, and the Source timing out
waiting for the expected RSEQ value (i.e.,
RSEQ > last RSEQ).

The Destination shall use RSEQ = x'FF' after a
Link Reset or Initialize operation until it has
received the micropacket with TSEQ = x'00'.

10 Signal line encoding

10.1 Signal line bit assignments

The data bytes and control bits shall be
transmitted on the signal lines specified in table
3 for a 16-bit wide interface, and as specified in
table 4 for an 8-bit wide interface.
Nomenclature for the data and control bits is
detailed in figure 3. Data signal lines are
labeled capital D and a two-digit number, e.g.,
D00. Control signal lines are labeled capital C
and a one-digit number, e.g., C0. The
horizontal rows correspond to logical clock ticks.
They are grouped in fours, corresponding to the
4b/5b coding.

Table 3 – Signal line bit assignments in a 16-bit system

Signal lines

D D D D D D D D D D D D D D D D
bit C3 C2 C1 C0 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

a 12 08 04 00 07.4 07.0 06.4 06.0 05.4 05.0 04.4 04.0 03.4 03.0 02.4 02.0 01.4 01.0 00.4 00.0
b 13 09 05 01 07.5 07.1 06.5 06.1 05.5 05.1 04.5 04.1 03.5 03.1 02.5 02.1 01.5 01.1 00.5 00.1
c 14 10 06 02 07.6 07.2 06.6 06.2 05.6 05.2 04.6 04.2 03.6 03.2 02.6 02.2 01.6 01.2 00.6 00.2
d 15 11 07 03 07.7 07.3 06.7 06.3 05.7 05.3 04.7 04.3 03.7 03.3 02.7 02.3 01.7 01.3 00.7 00.3

a 28 24 20 16 15.4 15.0 14.4 14.0 13.4 13.0 12.4 12.0 11.4 11.0 10.4 10.0 09.4 09.0 08.4 08.0
b 29 25 21 17 15.5 15.1 14.5 14.1 13.5 13.1 12.5 12.1 11.5 11.1 10.5 10.1 09.5 09.1 08.5 08.1
c 30 26 22 18 15.6 15.2 14.6 14.2 13.6 13.2 12.6 12.2 11.6 11.2 10.6 10.2 09.6 09.2 08.6 08.2
d 31 27 23 19 15.7 15.3 14.7 14.3 13.7 13.3 12.7 12.3 11.7 11.3 10.7 10.3 09.7 09.3 08.7 08.3

a 44 40 36 32 23.4 23.0 22.4 22.0 21.4 21.0 20.4 20.0 19.4 19.0 18.4 18.0 17.4 17.0 16.4 16.0
b 45 41 37 33 23.5 23.1 22.5 22.1 21.5 21.1 20.5 20.1 19.5 19.1 18.5 18.1 17.5 17.1 16.5 16.1
c 46 42 38 34 23.6 23.2 22.6 22.2 21.6 21.2 20.6 20.2 19.6 19.2 18.6 18.2 17.6 17.2 16.6 16.2
d 47 43 39 35 23.7 23.3 22.7 22.3 21.7 21.3 20.7 20.3 19.7 19.3 18.7 18.3 17.7 17.3 16.7 16.3

a 60 56 52 48 31.4 31.0 30.4 30.0 29.4 29.0 28.4 28.0 27.4 27.0 26.4 26.0 25.4 25.0 24.4 24.0
b 61 57 53 49 31.5 31.1 30.5 30.1 29.5 29.1 28.5 28.1 27.5 27.1 26.5 26.1 25.5 25.1 24.5 24.1
c 62 58 54 50 31.6 31.2 30.6 30.2 29.6 29.2 28.6 28.2 27.6 27.2 26.6 26.2 25.6 25.2 24.6 24.2
d 63 59 55 51 31.7 31.3 30.7 30.3 29.7 29.3 28.7 28.3 27.7 27.3 26.7 26.3 25.7 25.3 24.7 24.3

NOTES
1 The two-digit numbers in the Cn columns are the control bits, cnn.
2 The three-digit numbers in the Dnn columns are the data bits, dxx .y, where xx is the byte number and

 y is the bit number in the byte.
3 The 4-bit groups in a column are transmitted on the associated signal line, top group first, bottom

group last.
4 The four-bit groups in a column denote 4-bit code groups (dcba) for encoding/decoding to/from the

5-bit transmission codes (zyTxw) specified in table 5. A 5-bit group code (wxTyz) is transmitted over
one signal line, e.g., D00.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

19

Table 4 – Signal line bit assignments in an 8-bit system

 Signal lines

D D D D D D D D
bit C1 C0 07 06 05 04 03 02 01 00

a 08 00 07.0 06.0 05.0 04.0 03.0 02.0 01.0 00.0
b 09 01 07.1 06.1 05.1 04.1 03.1 02.1 01.1 00.1
c 10 02 07.2 06.2 05.2 04.2 03.2 02.2 01.2 00.2
d 11 03 07.3 06.3 05.3 04.3 03.3 02.3 01.3 00.3

a 12 04 07.4 06.4 05.4 04.4 03.4 02.4 01.4 00.4
b 13 05 07.5 06.5 05.5 04.5 03.5 02.5 01.5 00.5
c 14 06 07.6 06.6 05.6 04.6 03.6 02.6 01.6 00.6
d 15 07 07.7 06.7 05.7 04.7 03.7 02.7 01.7 00.7

a 24 16 15.0 14.0 13.0 12.0 11.0 10.0 09.0 08.0
b 25 17 15.1 14.1 13.1 12.1 11.1 10.1 09.1 08.1
c 26 18 15.2 14.2 13.2 12.2 11.2 10.2 09.2 08.2
d 27 19 15.3 14.3 13.3 12.3 11.3 10.3 09.3 08.3

a 28 20 15.4 14.4 13.4 12.4 11.4 10.4 09.4 08.4
b 29 21 15.5 14.5 13.5 12.5 11.5 10.5 09.5 08.5
c 30 22 15.6 14.6 13.6 12.6 11.6 10.6 09.6 08.6
d 31 23 15.7 14.7 13.7 12.7 11.7 10.7 09.7 08.7

a 40 32 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0
b 41 33 23.1 22.1 21.1 20.1 19.1 18.1 17.1 16.1
c 42 34 23.2 22.2 21.2 20.2 19.2 18.2 17.2 16.2
d 43 35 23.3 22.3 21.3 20.3 19.3 18.3 17.3 16.3

a 44 36 23.4 22.4 21.4 20.4 19.4 18.4 17.4 16.4
b 45 37 23.5 22.5 21.5 20.5 19.5 18.5 17.5 16.5
c 46 38 23.6 22.6 21.6 20.6 19.6 18.6 17.6 16.6
d 47 39 23.7 22.7 21.7 20.7 19.7 18.7 17.7 16.7

a 56 48 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0
b 57 49 31.1 30.1 29.1 28.1 27.1 26.1 25.1 24.1
c 58 50 31.2 30.2 29.2 28.2 27.2 26.2 25.2 24.2
d 59 51 31.3 30.3 29.3 28.3 27.3 26.3 25.3 24.3

a 60 52 31.4 30.4 29.4 28.4 27.4 26.4 25.4 24.4
b 61 53 31.5 30.5 29.5 28.5 27.5 26.5 25.5 24.5
c 62 54 31.6 30.6 29.6 28.6 27.6 26.6 25.6 24.6
d 63 55 31.7 30.7 29.7 28.7 27.7 26.7 25.7 24.7

NOTES:
1 The two-digit numbers in the Cn columns are the control

 bits, cnn.
2 The three-digit numbers in the Dnn columns are the data

bits, dxx .y, where xx is the byte number and y is the bit
number in the byte.

3 The 4-bit groups in a column are transmitted on the
associated signal line, top group first, bottom group last.

4 The four-bit groups in a column denote 4-bit code groups
(dcba) for encoding/decoding to/from the 5-bit transmission
codes (zyTxw) specified in table 5. A 5-bit code group
(wxTyz) is transmitted over one signal line, e.g., D00.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

20

10.2 Source-side encoding for dc balance

The transmitted signals shall be encoded to
achieve dc balance on each signal line. Table
5 specifies the 5-bit signal line codes (zyTxw)
corresponding to the 4-bit input codes (dcba)
from tables 3 and 4. For example, on signal
line D00, the first dcba 4-bit code consists of
bits d00.0, d00.1, d00.2, and d00.3. See
annex A.1 for an example circuit.

A running count, called the Disparity Count,
shall be kept of all the ones and zeros
transmitted since the link was reset. The
Disparity Count shall be incremented for each
one transmitted, and decremented for each
zero transmitted.

The appropriate 5-bit code value from table 5,
based on the current value of the Disparity
Count, shall be transmitted in the sequence,
w,x,T,y,z. (T = true/complement bit) For
example in the right column of tables 3 and 4,
if:

a = d00.0 = 1 (least-significant bit)
b = d00.1 = 0
c = d00.2 = 0
d = d00.3 = 0
and Disparity Count = +1 before encoding,

then, based on the third column second row in
table 5, transmit on D00:

w = 1 (transmitted first)
x = 0
T = 1
y = 0
z = 0

Disparity Count = 0 after encoding.

NOTES

1 The range for the Disparity Count at the 5-bit
boundaries is from +4 to -5. The range for the
Disparity Count is from +6 to -7.

2 The Disparity Count may also be updated by
adding or subtracting the value of Delta Disparity
shown in table 5. Add Delta Disparity if Disparity
Count < 0; subtract if ≥ 0.

3 The 5-bit code is derived by inserting a 1 in the
middle of the 4-bit code, and then transmitting either
the true or complement value of the resultant 5-bit
quantity.

4. The maximum run length, i.e., the longest string
of continuous 1s or 0s, is 11. The string of 4-bit
code points creating the maximum run length is
x'EFC'. Start with Disparity Count = +3 or +4 for a

string of 11 zeros. Start with Disparity Count = -4 or
-5 for a string of 11 ones.

The data and control signal lines shall be
synchronized with the CLOCK, CLOCK_2, and
FRAME signals as shown in figures 10 and 12.
Figures 11 through 14 are read left to right, i.e.,
events on the left occur before those on the
right. In figures 11 and 13, the CLOCK_2
signal is deliberately shown skewed in relation
to the CLOCK signal, although in actual
implementation it may not be skewed (see
14.1).

Table 5 – 4b/5b line coding

4-bit
code

dcba

5-bit code
when

Disparity
< 0

zyTxw

5-bit code
when

Disparity
≥ 0

zyTxw

Delta
Disparity

0000 11011 00100 3

0001 11010 00101 1

0010 11001 00110 1

0011 00111 11000 1

0100 10011 01100 1

0101 01101 10010 1

0110 01110 10001 1

0111 01111 10000 3

1000 01011 10100 1

1001 10101 01010 1

1010 10110 01001 1

1011 10111 01000 3

1100 11100 00011 1

1101 11101 00010 3

1110 11110 00001 3

1111 11111 00000 5

10.3 Destination-side decoding

The received signals shall each be decoded in
groups of five bits according to table 5.

NOTES

1 Decoding can be implemented by examining the
middle bit of the 5-bit code; if 1 then use the outer
bits uncomplemented, if 0 then complement before
use.

2 There are no illegal 5-bit codes.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

21

xw yT wz Tx zy xw yT wz Tx zy

2 ns ticks

CLOCK_2

FRAME

d00.0
to

d00.3

d08.0
to

d08.3

d16.0
to

d16.3

d24.0
to

d24.3

Dnn or Cn

D00 contents
shown

40 ns

CLOCK

Figure 11 – 16-bit system micropacket

zzyTzywTwzw T y x y z x T z w T y w x y zx x w x T z w T y w x yx T

d00.0
to

d00.3

d00.4
to

d00.7

d08.0
to

d08.3

d08.4
to

d08.7

d16.0
to

d16.3

d16.4
to

d16.7

d24.0
to

d24.3

d24.4
to

d24.7

1 ns ticks

CLOCK

FRAME

Dnn or Cn

D00 contents
shown

40 ns

Figure 12 – 8-bit system micropacket

10.4 FRAME signal

The FRAME signal transitions shall be as
shown in figures 11 through 14. As shown in
figures 13 and 14, the start of a training
sequence (40 ns long) shall be signaled by a
10101 FRAME signal pattern.

As shown in figures 11 and 12, a 0 to 1
transition on the FRAME signal shall signal the
beginning of a micropacket, unless the
transition is part of a training sequence. In a
micropacket, the FRAME signal shall remain =
1 for the first half of the micropacket (20 ns),
and shall = 0 for the last half (20 ns).

11 Link training

The Destination shall compensate for up to 10
ns of skew among the signals. Skew is defined
as the time between the earliest and latest
signal arrival at the Destination. Training
sequences (see figures 13 and 14) shall be
used to measure the skew, and perform
dynamic skew adjustments. A FRAME signal
pattern of 10101, as specified in 10.4, shall be
used to identify a training sequence.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

22

2 ns ticks

CLOCK

FRAME

Dnn and C n

40 ns

Training
detect
(10 ns)

Fill the line
with zeros

(14 ns)

Skew compensation
and edge placement

(14 ns)

Detect 10101 on FRAME signal
Bring Dnn and C n signals to 0 or -1 disparity

CLOCK_2

Figure 13 – 16-bit system training sequence

1 ns ticks

CLOCK

FRAME

Dnn and C n

40 ns

Training
detect
(9 ns)

Fill the line
with zeros

(14 ns)

Skew compensation
and edge placement

(14 ns)

Detect 10101 (min) on FRAME signal
Bring Dnn and C n signals to 0 or -1 disparity

Figure 14 – 8-bit system training sequence

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

23

A single training sequence shall be inserted by
the Source at least every 10 µs to adjust the
dynamic skew, and also to compensate for
CLOCK frequency differences between the
Source and Destination (see annex A.2) During
the first portion of a training sequence the
Source shall insert appropriate Data and
Control bits to drive the Disparity Count (see
10.2) on those signal lines to 0 or -1. The
Disparity Count shall be set to zero at the end
of the training sequence.

If a training sequence is unsuccessful, after the
link had been healthy, then a
Skew_Retraining_Error shall be logged.

12 Initialization and Shutdown

Two levels of initialization are specified, Link
Reset and Initialize. They differ in whether the
action may be propagated to other links.
These operations are diagrammed in figure 15.
Link Shutdown occurs when the link is fatally
flawed, and requires administrator intervention
for recovery.

12.1 Link Reset

Link Reset affects the local link only, it is not
propagated to other links. Link Reset may be
triggered by power-on, the local administrator, a
Port_Reset Admin command, credit overflow, or
receiving a micropacket with TYPE = Reset.

A Link Reset operation shall execute training
sequences, and reset the local state, exiting
with:

– All of the VC input and output buffers shall
be emptied.

– Credit for all of the VCs shall be set to zero.

– TSEQ shall be reset to x'00'; RSEQ shall be
set to x'FF'.

– The dynamic skew compensation circuitry
adjusted, and micropackets being received
correctly.

– The Disparity Count will have been set to
minus one.

– The other end of the link will have also
executed a Link Reset operation.

During a Link Reset operation micropackets
with TYPE ≠ x'2' - x'5' shall be discarded, and
the error logging specified in clause 9 shall not
occur. The error counts accessible by Admin
operation (see table 6) shall not be modified by
a Link Reset operation except when first
coming out of a power-on or Initialize operation.

12.2 Initialize

Initialize resets the local link as defined in 12.1,
and is passed to the administrator for possible
propagation to other entities. Initialize may be
triggered by the local administrator, a
Port_Initialize Admin command, or receiving a
micropacket with TYPE = Initialize (see 6.3.1).

During an Initialize operation micropackets with
TYPE ≠ x'4' or x'5' shall be discarded, and the
error logging specified in clause 9 shall occur.
The error counts accessible by Admin
operations (see table 6) shall not be modified
by an Initialize operation. All timeout timers
(see table 7) shall be initialized at the
completion of the Initialize operation.

12.3 Link Shutdown

A Link Shutdown occurs when:

– The number of times retransmission occurs
exceeds some limit (see 8.4).

–The Source has been unable to transmit
due to lack of credit (see 8.1).

–A Destination receives micropackets for a
VC whose VC Buffer (see figure 5) is full. In
this case, a VC[0-3]_RX_VC_Buffer_Overflow
error logged shall be logged.

–The link does not come out of a Link Reset
or Initialize operation within a default time of
0.5 seconds (see 13.2). In this case, a
Skew_Training_Reset_Error shall also be
logged. This time is measured from the time
the Hold-off timer is started in figure 15.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

24

Send Training Sequence,
Send Training Sequence,

Send Initialize micropacket

Send Training Sequence,
Send Training Sequence,

Send Initialize_ACK
micropacket

No

Yes

Initialize or Initialize_ACK
micropacket received ?

No

Initialize
micropacket received ?

Send Training Sequence,
Send Training Sequence,
Send Reset micropacket

Send Training Sequence,
Send Training Sequence,

Send Reset_ACK
micropacket

No

Yes

No

Yes

Reset or Reset_ACK
micropacket received ?

Yes

No

No

Yes

Reset_ACK micropacket
received ?

Normal operation

No

Initialize micropacket
received ?

Reset micropacket
received ?

No

Normal HIPPI-6400
operation and

Holdoff expired

Yes

Yes

Locally
generated
Initialize
operation

Reset local state
Reset local state,

Pass Initialize to Administrator,
Start Hold-off timer

Locally
generated

Reset
operation

No

Yes

Initialize_ACK
micropacket received ?

Yes

No

Yes
Reset micropacket

received ?

Initialize or Initialize_ACK
micropacket received ?

Initialize or Initialize_ACK
micropacket received ?

Power-On may do
either Initialize
or Reset

Power-On

Figure 15 – Initialize and Link Reset operations

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

25

All of the VC input and output buffers shall be
emptied. While the link is shutdown, incoming
micropackets with TYPE = x'2'-x'5' shall be
processed, all other micropackets shall be
discarded. External administrative action
beyond the scope of this standard may be
required to recover from a Link Shutdown.
Note that administrative actions may clear the
error counts accessible by Admin operations
(see table 6).

Until expired, the Hold-off timer shall be used to
prohibit incoming TYPE = Initialize micropackets
from starting an Initialize sequence. The Hold-
off timer shall be started by receipt of a TYPE =
Initialize_ACK micropacket. The default value
for the Hold-off timer shall be 10 seconds (see
13.2). The intent of the Hold-off timer is to
prevent infinite Initialize oscillations between
connected devices.

13 Maintenance and control features

13.1 Logged errors

Table 6 contains a summary of the errors that
shall be logged, the minimum number of bits
for the parameter, and the location in this
standard discussing the error. A counter shall
not roll over if its maximum value is reached.

13.2 Timeouts

Table 7 contains a summary of the timeouts,
their default value, and the location in this
standard discussing the timeout. All of the
timeouts shall be programmable, at least to
values of 2X, 1/2X, and 1/4X. The
mechanisms and procedures used to set
values, different from the default values, are
outside the scope of this standard.

14 Timing

14.1 Source CLOCK signals

The transmitted CLOCK, and CLOCK_2,
signals at the Source bulkhead connector shall
have a nominal period of 4 ns ± 0.8 ps (±
0.02%, i.e., 200 parts per million) for a 16-bit
system, and a period of 2 ns ± 0.2 ps (±0.01%,
i.e., 100 parts per million) for an 8-bit system.
During a training sequence, the Source CLOCK
signal waveform shall be as shown in figures 13
and 14. The CLOCK_2 signal shall be a
constant square wave. Note that the CLOCK_2
signal is only present in 16-bit systems. The
phase relationship between CLOCK and
CLOCK_2 shall be any constant value.

Open Issue – The CLOCK_2 frequency of 250 MHz is
open for discussion – it may be changed to a lower
frequency for easier detection.

CLOCK, and CLOCK_2, symmetry, measured
as the percentage of time in the high state
compared to the total CLOCK period, shall be
50 (±5) %. Peak jitter shall be less than 0.05 ns
for a 16-bit system; less than 0.025 ns for an 8-
bit system.

14.2 Destination CLOCK signals

The intended uses of the separate CLOCK and
CLOCK_2 signals are:

– to provide a separate signal that can be
monitored for activity without affecting the
signal used for strobing the other signals. If
inactivity is detected, the other signals should
be ignored to avoid spurious error indications.

– to support different skew compensation
implementations. The CLOCK signal used to
strobe the signals during retraining shall also
be used to strobe the signals during regular
operation.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

26

Table 6 – Summary of logged errors

Name
Minimum
Number
of bits

Reference

ECRC_Error 8 9.1.3

ECRC_Source_Error 8 6.6.3

LCRC_Error 8 9.1.1

Retransmission_Error 8 8.4

RSEQ_Missing_Error 8 8.2

RSEQ_Out_Of_Range_Error 8 8.2

Skew_Retraining_Error 1 12

Skew_Training_Reset_Error 1 12.3

TSEQ_Error 8 9.1.2

Undefined_TYPE_Value 4 9.1.4

VC[1-2]_Admin_Tail_Error 1/2 9.2.1

VC[0-3]_Credit_Overflow_Error 1/4 8.1

VC[0-3]_Missing_End_of_Message_Error 1/4 9.2.3

VC[0-3]_Missing_Start_of_Message_Error 1/4 9.2.2

VC[0-3]_Stall_Timeout_Error 1/4 9.2.4

VC[0-3]_RX_VC_Buffer_Overflow 1/4 12.3

VC[0-3]_Undefined_TYPE_Error 1/4 9.1.4

VC[0-3]_Credit_Timeout_Error 1/4 8.1

NOTE – The 1/4 entries under the Number of bits column means that there is one
bit for an error, e.g., for VC0_Missing_End_of_Message_Error, and a total of four
errors possible (i.e., one for each VC).

Table 7 – Summary of timeouts

Name
Default
value

Reference

ACK indication timeout 12 µs 8.2

Credit timeout 2 s 8.1

Hold-off timer 10 s 12.3

Reset or Initialize timeout 0.5 s 12.3

Stall timeout 2 ms 9.2.4

Open Issue – The values for the Holdoff and Reset timers are still under discussion.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

27

14.3 FRAME, Data, and Control signals

The FRAME signal shall be strobed on the
rising edge of the CLOCK signal. The Data and
Control signals shall be strobed on both edges
of the CLOCK signal.

15 Copper interface (optional)

15.1 General

The copper interface is only applicable to 16-bit
systems. Unless otherwise specified, all
parameters shall be measured at the bulkhead
connector of the Source or Destination
equipment. Specifications shall be met when
operating with a specified cable and
termination. Figure 16 shows the components
used in a signal path.

15.2 Electrical output interface

Differential drivers shall be used on all signal
lines. Signals in the 'true' or '1' state shall have
the xx_Out_p pin more positive than the
xx_Out_n pin. Rise and fall times shall be
measured at the 20% and 80% points of the
signal transition.

– Maximum high-level output voltage =2.69 V

– Minimum high-level output voltage = 2.20 V

– Maximum low-level output voltage = 0.28 V

– Minimum low-level output voltage = 0 V

– Maximum rise time = 350 ps

– Minimum rise time = 100 ps

– Maximum fall time = 350 ps

– Minimum fall time = 100 ps

– Pair-to-pair skew ≤ TBD

– Within pair skew ≤ TBD

Open Issue – These values were picked as the
voltages at the SuMAC, and will need to be adjusted for
measurement at the bulkhead connector.

The Source coupling network shall consist of

Open Issue – What should the Reserved pins be tied
to? Signal ground? Shield ground? Left open?

15.3 Electrical input interface

All differential line receivers shall operate
correctly when receiving signals meeting the
following voltage specifications at the
Destination connector:

– Minimum peak-to-peak differential input
voltage = 150 mV

– Input High voltage ≤

– Input Low voltage ≥

The Destination coupling network between the
cable and the receiver shall consist of

Open Issue – The parameter values need to be filled in,
and the coupling network specified.

15.4 Electrical connector

The cable connectors shall be a two-row, 100-
pin connectors as shown in figure xx. Pin
assignments are shown in figure 17. Reserved
pins shall not be connected.

Open Issue – The connector drawings will be added
when time permits.

These connector specifications shall apply for
up to 10,000 mating cycles. Each pin shall
have a ≥ 1 A current capability, with the total
current capability for all pins simultaneously
shall be ≥ 5 A.

Source
coupling
network

Destination
coupling/

termination
network

xx_Out_p

xx_Out_n

xx_In_p

xx_In_n

Driver Receiver

Figure 16 – Signal path

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

28

Open Issue – The connector pin assignments shown in
figure 17 changed since Rev 0.5. The new
assignments need to be checked.

The connectors shall provide RFI/EMI shielding
sufficient to pass all appropriate compliance
tests.

Attenuation shall be ≤ 0.1 dB. When multiple
pairs are driven differentially with a 100 ps
risetime (20% – 80%) pulse, near end crosstalk
shall be ≤ 10%.

Latches shall be used to hold the connectors in
the mated position. To prevent damage, if
someone trips over a cable, the connector shall
un-mate, without damage, when a pull force of
TBD pounds is applied in the direction of the
cable exit.

Open Issue – This is a first pass at these
specifications, hence they need review and refinement.

15.5 Cable specifications

The cable shall provide differential paths for 46
signals, 23 in each direction. Cable length is
determined by cable quality, environmental
factors, and the possible use of equalizers. All
cable assemblies (cable and optional equalizer
if used) shall meet the following specifications:

– Impedance = 150 Ω ± 10%

– Pair-to-pair skew ≤5 ns

– Within-pair skew ≤ 250 ps

– Attenuation @ 250 MHz ≤ 20 dB

– Outside diameter ≤ 0.665 in (16.9 mm)

– Jacket material = CL-2.2P/FT6 (plenum
rated)

– Bend radius ≤ 6 in (152 mm)

The cable shall provide individual shields, or
equivalent, for each differential path. These
individual shields shall be floating, i.e., not
connected to each other, to the overall shield,
or to the connector. There shall be an overall
shield. At one end of the cable the overall
shield shall be connected to pin 50, and
insulated from the connector backshell; pin 51
shall not be connected. At the other end of the

cable the overall shield shall be connected to
pin 51, and connected to the backshell; pin 50
shall not be connected. On the chassis side of
the connector, pin 51 shall be connected to
chassis ground, and pin 50 connected to
chassis ground through a TBD capacitor.

The reserved pins shall not be connected.

16 Optical interface (optional)

16.1 General

Open Issue - Width of interface – 8+2+1+1?

Open Issue - Signalling frequency, tolerance

Open Issue - What is the shape of the FRAME signal?

16.2 Optical output interface

Open Issue - Optical parameters – wavelength, power,
...

Open Issue - What is the output skew specification?

16.3 Optical input interface

Open Issue - Optical parameters – power...

Open Issue - What is the input skew specification?

16.4 Optical connector

Open Issue - Connector pin assignments

Open Issue - Connector specifications?

Open Issue - Different connectors at Source and
Destination? Same with keying?

Open Issue - Field termination of connectors

16.5 Optical cable specifications

Open Issue - Cable type, number of fibers

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

29

Open Issue - Cable length

Open Issue - Cable optical specs. – loss, crosstalk,
relative skew, ...

Open Issue - Cable mechanical – fiber pitch, size,
jacket material

Shield 51 1 CLOCK_2_Out_p
D00_Out_p 52 2 CLOCK_2_Out_n
D00_Out_n 53 3 D08_Out_p
D01_Out_p 54 4 D08_Out_n
D01_Out_n 55 5 D09_Out_p
D02_Out_p 56 6 D09_Out_n
D02_Out_n 57 7 D10_Out_p
D03_Out_p 58 8 D10_Out_n
D03_Out_n 59 9 D11_Out_p
D04_Out_p 60 10 D11_Out_n
D04_Out_n 61 11 D12_Out_p
D05_Out_p 62 12 D12_Out_n
D05_Out_n 63 13 D13_Out_p
D06_Out_p 64 14 D13_Out_n
D06_Out_n 65 15 D14_Out_p
D07_Out_p 66 16 D14_Out_n
D07_Out_n 67 17 D15_Out_p
C0_Out_p 68 18 D15_Out_n
C0_Out_n 69 19 C2_Out_p
C1_Out_p 70 20 C2_Out_n
C1_Out_n 71 21 C3_Out_p

CLOCK_Out_p 72 22 C3_Out_n
CLOCK_Out_n 73 23 FRAME_Out_p

Ground 74 24 FRAME_Out_n
Ground 75 25 Power
Ground 76 26 Power

FRAME_In_n 77 27 Power
FRAME_In_p 78 28 CLOCK_In_n

C3_In_n 79 29 CLOCK_In_p
C3_In_p 80 30 C1_In_n
C2_In_n 81 31 C1_In_p
C2_In_p 82 32 C0_In_n

D15_In_n 83 33 C0_In_p
D15_In_p 84 34 D07_In_n
D14_In_n 85 35 D07_In_p
D14_In_p 86 36 D06_In_n
D13_In_n 87 37 D06_In_p
D13_In_p 88 38 D05_In_n
D12_In_n 89 39 D05_In_p
D12_In_p 90 40 D04_In_n
D11_In_n 91 41 D04_In_p
D11_In_p 92 42 D03_In_n
D10_In_n 93 43 D03_In_p
D10_In_p 94 44 D02_In_n
D09_In_n 95 45 D02_In_p
D09_In_p 96 46 D01_In_n
D08_In_n 97 47 D01_In_p
D08_In_p 98 48 D00_In_n

CLOCK_2_In_n 99 49 D00_In_p
CLOCK_2_In_p 100 50 Shield

Figure 17 – Bulkhead connector pin
assignments

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

30

Annex A
(informative)

Implementation comments

A.1 4b/5b encoding and decoding

Encoding the 4-bit code groups into 5-bit
transmission codes may be implemented as
shown in the left portion of the example in
figure A.1. Decoding the 4-bit code from the 5-
bit code may be implemented as shown in the
right portion of figure A.1. The specification for
the encoding and decoding is in 10.2 and 10.3.

A.2 Frequency differences between Source
and Destination

Although the two ends of a HIPPI-6400 link run
at nominally the same speed, there can be very
slight differences in clock frequency due to
inaccuracy of the crystal oscillators at each end.
If a transmitter is allowed to send an very long
burst of continuous traffic, this will eventually

cause a receiver to overrun if that receiver's
clock is slightly slower than the transmitter's
clock.

To prevent this condition, the length of
continuous data transmission is limited by
inserting non-data micropackets (training
sequences in HIPPI-6400-PH) periodically. The
frequency of training sequences is determined
by the potential inaccuracy of the oscillators
and the amount of drift the receiver can
tolerate. With ± 200 ppm of frequency error
(see 14.1), the total clock error could be as
large as 400 ppm, since the sender and
receiver could be off in opposite directions.
Allowing a drift of 4 ns before correction, takes
4 ns x (1/400 ppm) = 10 µs. Hence, the
requirement that HIPPI-6400-PH transmitters
insert retraining sequences at least every 10 µs.

z

d c b a

4-bit codePrevious
disparity

y T x w

True or
complement

decision

5-bit code

Source

= True/complement gate,
1 = true, 0 = complement

d c b a

4-bit code
Destination

z y T x w
Serial signal line

Figure A.1 – Encode / decode circuit example

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

31

A.3 LCRC parallel implementation

The LCRC specified in 6.6.2 and figure 8 is
based on a bit-by-bit serial implementation.
Parallel implementations may be used as long
as they produce the same results as the serial
example. Tables A.3 and A.4 give equations for
16-bit and 64-bit parallel LCRC
implementations, useful for LCRC generation
as shown in figure A.2. Table A.5 gives 80-bit
parallel equations for LCRC checking, as shown
in figure A.3. Other parallel widths may be
used, these are just examples.

For these LCRC equations, c63 through c48
are the flip-flops shown in figure 8, and the
resultant LCRC control bits. bn are the bits
which must be delivered to the parallel equation
simultaneously. b0 is the first bit which would
have been supplied to the serial
implementation. The rn bits are the all 1's seed
value, and the intermediate results from the
Partial LCRC Register.

A.3.1 Parallel LCRC generator

Parallel LCRC generation can be accomplished
by cascading 16-bit parallel equations and 64-
bit parallel equations as shown in Figure A.2.
Four clock periods are used to produce the
LCRC value for a micropacket. Table A.1
summarizes the input bits for each clock period.

Table A.1 – Parallel LCRC input bits

Clock
Period

b79:64 b63:00 Mux
output

1 c00–c15 d00.0–d07.7 x'FFFF'

2 c16–c31 d08.0–d15.7 partial

3 c32–c47 d16.0–d23.7 partial

4 c48–c63 d24.0–d31.7 partial

a During the first period, the c00–c15 are
applied to the 16-bit equations, and the 64
bits d00.0–d07.7 are applied to the 64-bit
LCRC equations. Note that for this first cycle
only, the multiplexer is set to force x'FFFF' as
the 16-bit partial LCRC value, (i.e., initializing
with a value of all ones). The register is
clocked after the signals have settled.

b During the second period, c16–c31 are
applied to the 16-bit equations, and d08.0–
d15.7 are applied to 64-bit equations. The
register is clocked a second time.

c During the third period, c32–c47 are applied
to the 16-bit equations, and d16.0–d23.7 are
applied to the 64-bit equations. The register
is clocked a third time.

d During the fourth, and final, period, the
c48–c63 values presented to the 16-bit
equations are immaterial (they are just
included for consistency with the LCRC
checker), and d24.0–d31.7 are applied to the
64-bit equations – the register is not clocked.
After appropriate settling time, the LCRC is
available as c63–c48 (c63 is the msb).

64-bit LCRC
Equations

b63:00

LCRC
c63:48

2:1
Mux

x'FFFF'
Partial LCRC

Register
Clk

r63:48

16-bit LCRC
Equations

b79:64

Figure A.2 – Parallel LCRC generator
example

A.3.2 Parallel LCRC checker

Like the LCRC generator, the LCRC checker
uses four clock periods to produce the LCRC
check value. The LCRC checker can use a
single set of 80-bit equations as shown in figure
A.3 rather than cascading 16-bit and 64-bit
equations. The difference between the
generator and checker is that the generator
does not include the LCRC bits (c63:48) in the
calculation's final step, while the checker

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

32

includes them. A final LCRC value of x'0000'
means no error; x'06A9' means a stomp code.
The input bits are also summarized in table A.1,
and the time steps are essentially the same.

80-bit LCRC
Equations

b79:64

LCRC Check Value
c63:48

2:1
Mux

x'FFFF'
Partial LCRC

Register
Clk

r63:48

b63:00

Figure A.3 – Parallel LCRC checker example

A.4 ECRC parallel implementation

The ECRC specified in 6.6.3 and figure 9 is
based on a bit-by-bit serial implementation.
Parallel implementations may be used as long
as they produce the same results as the serial
example. Table A.6 gives equations for a 64-bit
parallel ECRC implementation as shown in
figure A.4. Other parallel widths may be used,
this is just an example.

For these ECRC equations, c47 through c32
are the flip-flops shown in figure 9, and the
resultant ECRC control bits. bn are the bits
which must be delivered to the parallel equation
simultaneously. b0 is the first bit which would
have been supplied to the serial
implementation. The rn bits are the all 1's seed
value, and the intermediate results from the
Partial ECRC Register. Four partial ECRC
registers are required since the ECRC is
continued across multiple micropackets, and
the micropackets from different VC's can be
interleaved. Four clock periods are used to

produce the ECRC value for a micropacket.
Table A.2 summarizes the input bits for each
clock period.

Table A.2 – Parallel ECRC input bits

Clock
Period

b63:00 Mux
output

1 d00.0–d07.7 (see text)

2 d08.0–d15.7 partial

3 d16.0–d23.7 partial

4 d24.0–d31.7 partial

a During the first period, the 64 bits d00.0–
d07.7 are applied to the 64-bit ECRC
equations. Note that for this first cycle only,
and only if this is the first micropacket of a
Message, the multiplexer is set to force
x'FFFF' as the 16-bit partial ECRC value, (i.e.,
initializing with a value of all ones). The
appropriate VC partial register is clocked after
the signals have settled.

b During the second period, d08.0–d15.7 are
applied to 64-bit equations. The appropriate
register is clocked a second time.

c During the third period, d16.0–d23.7 are
applied to the 64-bit equations. The
appropriate register is clocked a third time.

d During the fourth, and final, period, d24.0–
d31.7 are applied to the 64-bit equations.
After appropriate settling time, and without
clocking the register, the ECRC is available as
c63–c48 (c63 is the msb).

A.5 Undetected errors

Simulations have shown that all cases of up to
five simultaneous bit errors in a micropacket are
detected. Four cases of 4-bit errors are not
detected by LCRC or ECRC errors, but are
detected by other tests, e.g., bad TSEQ values.

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

33

VC3 partial
ECRC Register

Clk

VC2 partial
ECRC Register

Clk

VC1 partial
ECRC Register

Clk

64-bit ECRC
Equations

b63:00

ECRC
c47:32

5:1
Mux

x'FFFF'
VC0 partial

ECRC Register
Clk

r47:32

Figure A.4 – Parallel ECRC example

Table A.3 – 16-bit LCRC generator equations

Output Exclusive OR these bits together

r63 b79 b75 b71 b68 b67 c63 c59 c55 c52 c51

r62 b78 b74 b70 b67 b66 c62 c58 c54 c51 c50

r61 b77 b73 b69 b66 b65 c61 c57 c53 c50 c49

r60 b76 b72 b68 b65 b64 c60 c56 c52 c49 c48

r59 b75 b71 b67 b64 c59 c55 c51 c48

r58 b79 b75 b74 b71 b70 b68 b67 b66 c63 c59 c58 c55 c54 c52 c51 c50

r57 b78 b74 b73 b70 b69 b67 b66 b65 c62 c58 c57 c54 c53 c51 c50 c49

r56 b77 b73 b72 b69 b68 b66 b65 b64 c61 c57 c56 c53 c52 c50 c49 c48

r55 b76 b72 b71 b68 b67 b65 b64 c60 c56 c55 c52 c51 c49 c48

r54 b75 b71 b70 b67 b66 b64 c59 c55 c54 c51 c50 c48

r53 b74 b70 b69 b66 b65 c58 c54 c53 c50 c49

r52 b73 b69 b68 b65 b64 c57 c53 c52 c49 c48

r51 b79 b75 b72 b71 b64 c63 c59 c56 c55 c48

r50 b78 b74 b71 b70 c62 c58 c55 c54

r49 b77 b73 b70 b69 c61 c57 c54 c53

r48 b76 b72 b69 b68 c60 c56 c53 c52

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

34

Table A.4 – 64-bit LCRC generator equations

Output Exclusive OR these bits together

c63 b63 b59 b55 b52 b51 b44 b43 b41 b37 b36 b35 b31 b30 b28 b21 b15
b14 b12 b11 b8 b7 b5 b0 r63 r62 r60 r59 r56 r55 r53 r48

c62 b62 b58 b54 b51 b50 b43 b42 b40 b36 b35 b34 b30 b29 b27 b20 b14
b13 b11 b10 b7 b6 b4 r62 r61 r59 r58 r55 r54 r52

c61 b61 b57 b53 b50 b49 b42 b41 b39 b35 b34 b33 b29 b28 b26 b19 b13
b12 b10 b9 b6 b5 b3 r61 r60 r58 r57 r54 r53 r51

c60 b60 b56 b52 b49 b48 b41 b40 b38 b34 b33 b32 b28 b27 b25 b18 b12
b11 b9 b8 b5 b4 b2 r60 r59 r57 r56 r53 r52 r50

c59 b59 b55 b51 b48 b47 b40 b39 b37 b33 b32 b31 b27 b26 b24 b17 b11
b10 b8 b7 b4 b3 b1 r59 r58 r56 r55 r52 r51 r49
b63 b59 b58 b55 b54 b52 b51 b50 b47 b46 b44 b43 b41 b39 b38 b37

c58 b35 b32 b28 b26 b25 b23 b21 b16 b15 b14 b12 b11 b10 b9 b8 b6
b5 b3 b2 r63 r62 r60 r59 r58 r57 r56 r54 r53 r51 r50
b62 b58 b57 b54 b53 b51 b50 b49 b46 b45 b43 b42 b40 b38 b37 b36

c57 b34 b31 b27 b25 b24 b22 b20 b15 b14 b13 b11 b10 b9 b8 b7 b5
b4 b2 b1 r63 r62 r61 r59 r58 r57 r56 r55 r53 r52 r50 r49
b61 b57 b56 b53 b52 b50 b49 b48 b45 b44 b42 b41 b39 b37 b36 b35

c56 b33 b30 b26 b24 b23 b21 b19 b14 b13 b12 b10 b9 b8 b7 b6 b4
b3 b1 b0 r62 r61 r60 r58 r57 r56 r55 r54 r52 r51 r49 r48
b60 b56 b55 b52 b51 b49 b48 b47 b44 b43 b41 b40 b38 b36 b35 b34

c55 b32 b29 b25 b23 b22 b20 b18 b13 b12 b11 b9 b8 b7 b6 b5 b3
b2 b0 r61 r60 r59 r57 r56 r55 r54 r53 r51 r50 r48
b59 b55 b54 b51 b50 b48 b47 b46 b43 b42 b40 b39 b37 b35 b34 b33

c54 b31 b28 b24 b22 b21 b19 b17 b12 b11 b10 b8 b7 b6 b5 b4 b2
b1 r60 r59 r58 r56 r55 r54 r53 r52 r50 r49
b58 b54 b53 b50 b49 b47 b46 b45 b42 b41 b39 b38 b36 b34 b33 b32

c53 b30 b27 b23 b21 b20 b18 b16 b11 b10 b9 b7 b6 b5 b4 b3 b1
b0 r59 r58 r57 r55 r54 r53 r52 r51 r49 r48
b57 b53 b52 b49 b48 b46 b45 b44 b41 b40 b38 b37 b35 b33 b32 b31

c52 b29 b26 b22 b20 b19 b17 b15 b10 b9 b8 b6 b5 b4 b3 b2 b0
r63 r58 r57 r56 r54 r53 r52 r51 r50 r48
b63 b59 b56 b55 b48 b47 b45 b41 b40 b39 b35 b34 b32 b25 b19 b18

c51 b16 b15 b12 b11 b9 b4 b3 b2 b1 b0 r63 r60 r59 r57 r52 r51
r50 r49 r48
b62 b58 b55 b54 b47 b46 b44 b40 b39 b38 b34 b33 b31 b24 b18 b17

c50 b15 b14 b11 b10 b8 b3 b2 b1 b0 r63 r62 r59 r58 r56 r51 r50
r49 r48

c49 b61 b57 b54 b53 b46 b45 b43 b39 b38 b37 b33 b32 b30 b23 b17 b16
b14 b13 b10 b9 b7 b2 b1 b0 r62 r61 r58 r57 r55 r50 r49 r48

c48 b60 b56 b53 b52 b45 b44 b42 b38 b37 b36 b32 b31 b29 b22 b16 b15
b13 b12 b9 b8 b6 b1 b0 r63 r61 r60 r57 r56 r54 r49 r48

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

35

Table A.5 – 80-bit LCRC checker equations

Output Exclusive OR these bits together

b79 b75 b71 b68 b67 b60 b59 b57 b53 b52 b51 b47 b46 b44 b37 b31
c63 b30 b28 b27 b24 b23 b21 b16 b15 b14 b13 b12 b9 b7 b5 b4 b2

r63 r62 r61 r60 r57 r55 r53 r52 r50
b78 b74 b70 b67 b66 b59 b58 b56 b52 b51 b50 b46 b45 b43 b36 b30

c62 b29 b27 b26 b23 b22 b20 b15 b14 b13 b12 b11 b8 b6 b4 b3 b1
r63 r62 r61 r60 r59 r56 r54 r52 r51 r49
b77 b73 b69 b66 b65 b58 b57 b55 b51 b50 b49 b45 b44 b42 b35 b29

c61 b28 b26 b25 b22 b21 b19 b14 b13 b12 b11 b10 b7 b5 b3 b2 b0
r62 r61 r60 r59 r58 r55 r53 r51 r50 r48
b76 b72 b68 b65 b64 b57 b56 b54 b50 b49 b48 b44 b43 b41 b34 b28

c60 b27 b25 b24 b21 b20 b18 b13 b12 b11 b10 b9 b6 b4 b2 b1 r61
r60 r59 r58 r57 r54 r52 r50 r49
b75 b71 b67 b64 b63 b56 b55 b53 b49 b48 b47 b43 b42 b40 b33 b27

c59 b26 b24 b23 b20 b19 b17 b12 b11 b10 b9 b8 b5 b3 b1 b0 r60
r59 r58 r57 r56 r53 r51 r49 r48
b79 b75 b74 b71 b70 b68 b67 b66 b63 b62 b60 b59 b57 b55 b54 b53

c58 b51 b48 b44 b42 b41 b39 b37 b32 b31 b30 b28 b27 b26 b25 b24 b22
b21 b19 b18 b15 b14 b13 b12 b11 b10 b8 b5 b0 r63 r62 r61 r60
r59 r58 r56 r53 r48
b78 b74 b73 b70 b69 b67 b66 b65 b62 b61 b59 b58 b56 b54 b53 b52

c57 b50 b47 b43 b41 b40 b38 b36 b31 b30 b29 b27 b26 b25 b24 b23 b21
b20 b18 b17 b14 b13 b12 b11 b10 b9 b7 b4 r62 r61 r60 r59 r58
r57 r55 r52
b77 b73 b72 b69 b68 b66 b65 b64 b61 b60 b58 b57 b55 b53 b52 b51

c56 b49 b46 b42 b40 b39 b37 b35 b30 b29 b28 b26 b25 b24 b23 b22 b20
b19 b17 b16 b13 b12 b11 b10 b9 b8 b6 b3 r61 r60 r59 r58 r57
r56 r54 r51
b76 b72 b71 b68 b67 b65 b64 b63 b60 b59 b57 b56 b54 b52 b51 b50

c55 b48 b45 b41 b39 b38 b36 b34 b29 b28 b27 b25 b24 b23 b22 b21 b19
b18 b16 b15 b12 b11 b10 b9 b8 b7 b5 b2 r63 r60 r59 r58 r57
r56 r55 r53 r50
b75 b71 b70 b67 b66 b64 b63 b62 b59 b58 b56 b55 b53 b51 b50 b49

c54 b47 b44 b40 b38 b37 b35 b33 b28 b27 b26 b24 b23 b22 b21 b20 b18
b17 b15 b14 b11 b10 b9 b8 b7 b6 b4 b1 r63 r62 r59 r58 r57
r56 r55 r54 r52 r49
b74 b70 b69 b66 b65 b63 b62 b61 b58 b57 b55 b54 b52 b50 b49 b48

c53 b46 b43 b39 b37 b36 b34 b32 b27 b26 b25 b23 b22 b21 b20 b19 b17
b16 b14 b13 b10 b9 b8 b7 b6 b5 b3 b0 r62 r61 r58 r57 r56
r55 r54 r53 r51 r48
b73 b69 b68 b65 b64 b62 b61 b60 b57 b56 b54 b53 b51 b49 b48 b47

c52 b45 b42 b38 b36 b35 b33 b31 b26 b25 b24 b22 b21 b20 b19 b18 b16
b15 b13 b12 b9 b8 b7 b6 b5 b4 b2 r63 r61 r60 r57 r56 r55
r54 r53 r52 r50
b79 b75 b72 b71 b64 b63 b61 b57 b56 b55 b51 b50 b48 b41 b35 b34

c51 b32 b31 b28 b27 b25 b20 b19 b18 b17 b16 b13 b11 b9 b8 b6 b3
b2 b1 r61 r59 r57 r56 r54 r51 r50 r49
b78 b74 b71 b70 b63 b62 b60 b56 b55 b54 b50 b49 b47 b40 b34 b33

c50 b31 b30 b27 b26 b24 b19 b18 b17 b16 b15 b12 b10 b8 b7 b5 b2
b1 b0 r63 r60 r58 r56 r55 r53 r50 r49 r48
b77 b73 b70 b69 b62 b61 b59 b55 b54 b53 b49 b48 b46 b39 b33 b32

c49 b30 b29 b26 b25 b23 b18 b17 b16 b15 b14 b11 b9 b7 b6 b4 b1
b0 r63 r62 r59 r57 r55 r54 r52 r49 r48
b76 b72 b69 b68 b61 b60 b58 b54 b53 b52 b48 b47 b45 b38 b32 b31

c48 b29 b28 b25 b24 b22 b17 b16 b15 b14 b13 b10 b8 b6 b5 b3 b0
r63 r62 r61 r58 r56 r54 r53 r51 r48

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

36

Table A.6 – 64-bit ECRC generator / checker equations

Output Exclusive OR these bits together

b63 b59 b55 b51 b50 b48 b43 b42 b40 b37 b35 b34 b32 b31 b29 b26
c47 b22 b20 b19 b18 b17 b13 b11 b10 b7 b6 b4 b3 b2 b1 r45 r43

r42 r39 r38 r36 r35 r34 r33
b63 b62 b59 b58 b55 b54 b51 b49 b48 b47 b43 b41 b40 b39 b37 b36

c46 b35 b33 b32 b30 b29 b28 b26 b25 b22 b21 b20 b16 b13 b12 b11 b9
b7 b5 b4 b0 r45 r44 r43 r41 r39 r37 r36 r32
b62 b61 b58 b57 b54 b53 b50 b48 b47 b46 b42 b40 b39 b38 b36 b35

c45 b34 b32 b31 b29 b28 b27 b25 b24 b21 b20 b19 b15 b12 b11 b10 b8
b6 b4 b3 r47 r44 r43 r42 r40 r38 r36 r35
b63 b61 b60 b59 b57 b56 b55 b53 b52 b51 b50 b49 b48 b47 b46 b45

c44 b43 b42 b41 b40 b39 b38 b33 b32 b30 b29 b28 b27 b24 b23 b22 b17
b14 b13 b9 b6 b5 b4 b1 r46 r45 r41 r38 r37 r36 r33
b62 b60 b59 b58 b56 b55 b54 b52 b51 b50 b49 b48 b47 b46 b45 b44

c43 b42 b41 b40 b39 b38 b37 b32 b31 b29 b28 b27 b26 b23 b22 b21 b16
b13 b12 b8 b5 b4 b3 b0 r45 r44 r40 r37 r36 r35 r32
b61 b59 b58 b57 b55 b54 b53 b51 b50 b49 b48 b47 b46 b45 b44 b43

c42 b41 b40 b39 b38 b37 b36 b31 b30 b28 b27 b26 b25 b22 b21 b20 b15
b12 b11 b7 b4 b3 b2 r47 r44 r43 r39 r36 r35 r34
b60 b58 b57 b56 b54 b53 b52 b50 b49 b48 b47 b46 b45 b44 b43 b42

c41 b40 b39 b38 b37 b36 b35 b30 b29 b27 b26 b25 b24 b21 b20 b19 b14
b11 b10 b6 b3 b2 b1 r46 r43 r42 r38 r35 r34 r33
b59 b57 b56 b55 b53 b52 b51 b49 b48 b47 b46 b45 b44 b43 b42 b41

c40 b39 b38 b37 b36 b35 b34 b29 b28 b26 b25 b24 b23 b20 b19 b18 b13
b10 b9 b5 b2 b1 b0 r45 r42 r41 r37 r34 r33 r32
b58 b56 b55 b54 b52 b51 b50 b48 b47 b46 b45 b44 b43 b42 b41 b40

c39 b38 b37 b36 b35 b34 b33 b28 b27 b25 b24 b23 b22 b19 b18 b17 b12
b9 b8 b4 b1 b0 r44 r41 r40 r36 r33 r32
b57 b55 b54 b53 b51 b50 b49 b47 b46 b45 b44 b43 b42 b41 b40 b39

c38 b37 b36 b35 b34 b33 b32 b27 b26 b24 b23 b22 b21 b18 b17 b16 b11
b8 b7 b3 b0 r43 r40 r39 r35 r32
b56 b54 b53 b52 b50 b49 b48 b46 b45 b44 b43 b42 b41 b40 b39 b38

c37 b36 b35 b34 b33 b32 b31 b26 b25 b23 b22 b21 b20 b17 b16 b15 b10
b7 b6 b2 r47 r42 r39 r38 r34
b55 b53 b52 b51 b49 b48 b47 b45 b44 b43 b42 b41 b40 b39 b38 b37

c36 b35 b34 b33 b32 b31 b30 b25 b24 b22 b21 b20 b19 b16 b15 b14 b9
b6 b5 b1 r47 r46 r41 r38 r37 r33
b63 b59 b55 b54 b52 b47 b46 b44 b41 b39 b38 b36 b35 b33 b30 b26

c35 b24 b23 b22 b21 b17 b15 b14 b11 b10 b8 b7 b6 b5 b3 b2 b1
b0 r47 r46 r43 r42 r40 r39 r38 r37 r35 r34 r33 r32
b62 b58 b54 b53 b51 b46 b45 b43 b40 b38 b37 b35 b34 b32 b29 b25

c34 b23 b22 b21 b20 b16 b14 b13 b10 b9 b7 b6 b5 b4 b2 b1 b0
r46 r45 r42 r41 r39 r38 r37 r36 r34 r33 r32
b61 b57 b53 b52 b50 b45 b44 b42 b39 b37 b36 b34 b33 b31 b28 b24

c33 b22 b21 b20 b19 b15 b13 b12 b9 b8 b6 b5 b4 b3 b1 b0 r47
r45 r44 r41 r40 r38 r37 r36 r35 r33 r32
b60 b56 b52 b51 b49 b44 b43 b41 b38 b36 b35 b33 b32 b30 b27 b23

c32 b21 b20 b19 b18 b14 b12 b11 b8 b7 b5 b4 b3 b2 b0 r46 r44
r43 r40 r39 r37 r36 r35 r34 r32

working draft - HIPPI-6400-PH Rev 0.8, 11/15/96

37

